File size: 61,674 Bytes
1112c3f b0d1496 8c1d0f7 b0d1496 f5567a0 b0d1496 8c1d0f7 b0d1496 8c1d0f7 b0d1496 8c1d0f7 31cd561 b0d1496 31cd561 89af869 b0d1496 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 |
<!DOCTYPE html>
<html lang="en"><head>
<script src="Accelerate_files/libs/clipboard/clipboard.min.js"></script>
<script src="Accelerate_files/libs/quarto-html/tabby.min.js"></script>
<script src="Accelerate_files/libs/quarto-html/popper.min.js"></script>
<script src="Accelerate_files/libs/quarto-html/tippy.umd.min.js"></script>
<link href="Accelerate_files/libs/quarto-html/tippy.css" rel="stylesheet">
<link href="Accelerate_files/libs/quarto-html/quarto-html.min.css" rel="stylesheet" data-mode="light">
<link href="Accelerate_files/libs/quarto-html/quarto-syntax-highlighting-dark.css" rel="stylesheet" id="quarto-text-highlighting-styles"><meta charset="utf-8">
<meta name="generator" content="quarto-1.2.237">
<meta name="author" content="Zachary Mueller">
<title>Accelerate, Three Powerful Sublibraries for PyTorch</title>
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
<link rel="stylesheet" href="Accelerate_files/libs/revealjs/dist/reset.css">
<link rel="stylesheet" href="Accelerate_files/libs/revealjs/dist/reveal.css">
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1.6em;
vertical-align: middle;
}
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
}
pre.numberSource { margin-left: 3em; padding-left: 4px; }
div.sourceCode
{ color: #f8f8f2; }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span { color: #f8f8f2; } /* Normal */
code span.al { color: #f07178; background-color: #2a0f15; font-weight: bold; } /* Alert */
code span.an { color: #d4d0ab; } /* Annotation */
code span.at { color: #00e0e0; } /* Attribute */
code span.bn { color: #d4d0ab; } /* BaseN */
code span.bu { color: #abe338; } /* BuiltIn */
code span.cf { color: #ffa07a; font-weight: bold; } /* ControlFlow */
code span.ch { color: #abe338; } /* Char */
code span.cn { color: #ffd700; } /* Constant */
code span.co { color: #f8f8f2; font-style: italic; } /* Comment */
code span.cv { color: #ffd700; } /* CommentVar */
code span.do { color: #f8f8f2; } /* Documentation */
code span.dt { color: #ffa07a; } /* DataType */
code span.dv { color: #d4d0ab; } /* DecVal */
code span.er { color: #f07178; text-decoration: underline; } /* Error */
code span.ex { color: #00e0e0; font-weight: bold; } /* Extension */
code span.fl { color: #d4d0ab; } /* Float */
code span.fu { color: #ffa07a; } /* Function */
code span.im { color: #abe338; } /* Import */
code span.in { color: #d4d0ab; } /* Information */
code span.kw { color: #ffa07a; font-weight: bold; } /* Keyword */
code span.op { color: #ffa07a; } /* Operator */
code span.ot { color: #00e0e0; } /* Other */
code span.pp { color: #dcc6e0; } /* Preprocessor */
code span.re { color: #00e0e0; background-color: #f8f8f2; } /* RegionMarker */
code span.sc { color: #abe338; } /* SpecialChar */
code span.ss { color: #abe338; } /* SpecialString */
code span.st { color: #abe338; } /* String */
code span.va { color: #00e0e0; } /* Variable */
code span.vs { color: #abe338; } /* VerbatimString */
code span.wa { color: #dcc6e0; } /* Warning */
</style>
<link rel="stylesheet" href="Accelerate_files/libs/revealjs/dist/theme/quarto.css" id="theme">
<link href="Accelerate_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.css" rel="stylesheet">
<link href="Accelerate_files/libs/revealjs/plugin/reveal-menu/menu.css" rel="stylesheet">
<link href="Accelerate_files/libs/revealjs/plugin/reveal-menu/quarto-menu.css" rel="stylesheet">
<link href="Accelerate_files/libs/revealjs/plugin/quarto-support/footer.css" rel="stylesheet">
<style type="text/css">
.callout {
margin-top: 1em;
margin-bottom: 1em;
border-radius: .25rem;
}
.callout.callout-style-simple {
padding: 0em 0.5em;
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
display: flex;
}
.callout.callout-style-default {
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
}
.callout .callout-body-container {
flex-grow: 1;
}
.callout.callout-style-simple .callout-body {
font-size: 1rem;
font-weight: 400;
}
.callout.callout-style-default .callout-body {
font-size: 0.9rem;
font-weight: 400;
}
.callout.callout-captioned.callout-style-simple .callout-body {
margin-top: 0.2em;
}
.callout:not(.callout-captioned) .callout-body {
display: flex;
}
.callout:not(.no-icon).callout-captioned.callout-style-simple .callout-content {
padding-left: 1.6em;
}
.callout.callout-captioned .callout-header {
padding-top: 0.2em;
margin-bottom: -0.2em;
}
.callout.callout-captioned .callout-caption p {
margin-top: 0.5em;
margin-bottom: 0.5em;
}
.callout.callout-captioned.callout-style-simple .callout-content p {
margin-top: 0;
}
.callout.callout-captioned.callout-style-default .callout-content p {
margin-top: 0.7em;
}
.callout.callout-style-simple div.callout-caption {
border-bottom: none;
font-size: .9rem;
font-weight: 600;
opacity: 75%;
}
.callout.callout-style-default div.callout-caption {
border-bottom: none;
font-weight: 600;
opacity: 85%;
font-size: 0.9rem;
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-default div.callout-content {
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-simple .callout-icon::before {
height: 1rem;
width: 1rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 1rem 1rem;
}
.callout.callout-style-default .callout-icon::before {
height: 0.9rem;
width: 0.9rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 0.9rem 0.9rem;
}
.callout-caption {
display: flex
}
.callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
.callout.no-icon::before {
display: none !important;
}
.callout.callout-captioned .callout-body > .callout-content > :last-child {
margin-bottom: 0.5rem;
}
.callout.callout-captioned .callout-icon::before {
margin-top: .5rem;
padding-right: .5rem;
}
.callout:not(.callout-captioned) .callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
/* Callout Types */
div.callout-note {
border-left-color: #4582ec !important;
}
div.callout-note .callout-icon::before {
background-image: url('');
}
div.callout-note.callout-style-default .callout-caption {
background-color: #dae6fb
}
div.callout-important {
border-left-color: #d9534f !important;
}
div.callout-important .callout-icon::before {
background-image: url('');
}
div.callout-important.callout-style-default .callout-caption {
background-color: #f7dddc
}
div.callout-warning {
border-left-color: #f0ad4e !important;
}
div.callout-warning .callout-icon::before {
background-image: url('');
}
div.callout-warning.callout-style-default .callout-caption {
background-color: #fcefdc
}
div.callout-tip {
border-left-color: #02b875 !important;
}
div.callout-tip .callout-icon::before {
background-image: url('');
}
div.callout-tip.callout-style-default .callout-caption {
background-color: #ccf1e3
}
div.callout-caution {
border-left-color: #fd7e14 !important;
}
div.callout-caution .callout-icon::before {
background-image: url('');
}
div.callout-caution.callout-style-default .callout-caption {
background-color: #ffe5d0
}
</style>
<style type="text/css">
.reveal div.sourceCode {
margin: 0;
overflow: auto;
}
.reveal div.hanging-indent {
margin-left: 1em;
text-indent: -1em;
}
.reveal .slide:not(.center) {
height: 100%;
}
.reveal .slide.scrollable {
overflow-y: auto;
}
.reveal .footnotes {
height: 100%;
overflow-y: auto;
}
.reveal .slide .absolute {
position: absolute;
display: block;
}
.reveal .footnotes ol {
counter-reset: ol;
list-style-type: none;
margin-left: 0;
}
.reveal .footnotes ol li:before {
counter-increment: ol;
content: counter(ol) ". ";
}
.reveal .footnotes ol li > p:first-child {
display: inline-block;
}
.reveal .slide ul,
.reveal .slide ol {
margin-bottom: 0.5em;
}
.reveal .slide ul li,
.reveal .slide ol li {
margin-top: 0.4em;
margin-bottom: 0.2em;
}
.reveal .slide ul[role="tablist"] li {
margin-bottom: 0;
}
.reveal .slide ul li > *:first-child,
.reveal .slide ol li > *:first-child {
margin-block-start: 0;
}
.reveal .slide ul li > *:last-child,
.reveal .slide ol li > *:last-child {
margin-block-end: 0;
}
.reveal .slide .columns:nth-child(3) {
margin-block-start: 0.8em;
}
.reveal blockquote {
box-shadow: none;
}
.reveal .tippy-content>* {
margin-top: 0.2em;
margin-bottom: 0.7em;
}
.reveal .tippy-content>*:last-child {
margin-bottom: 0.2em;
}
.reveal .slide > img.stretch.quarto-figure-center,
.reveal .slide > img.r-stretch.quarto-figure-center {
display: block;
margin-left: auto;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-left,
.reveal .slide > img.r-stretch.quarto-figure-left {
display: block;
margin-left: 0;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-right,
.reveal .slide > img.r-stretch.quarto-figure-right {
display: block;
margin-left: auto;
margin-right: 0;
}
</style>
<script src="Accelerate_files/libs/quarto-diagram/mermaid.min.js"></script>
<script src="Accelerate_files/libs/quarto-diagram/mermaid-init.js"></script>
<link href="Accelerate_files/libs/quarto-diagram/mermaid.css" rel="stylesheet">
</head>
<body class="quarto-dark">
<div class="reveal">
<div class="slides">
<section id="title-slide" class="quarto-title-block center">
<h1 class="title">Accelerate, Three Powerful Sublibraries for PyTorch</h1>
<div class="quarto-title-authors">
<div class="quarto-title-author">
<div class="quarto-title-author-name">
Zachary Mueller
</div>
</div>
</div>
</section>
<section id="who-am-i" class="slide level2">
<h2>Who am I?</h2>
<ul>
<li>Zachary Mueller</li>
<li>Deep Learning Software Engineer at 🤗</li>
<li>API design geek</li>
</ul>
</section>
<section id="what-is-accelerate" class="slide level2">
<h2>What is 🤗 Accelerate?</h2>
<div class="cell" data-reveal="true" data-fig-height="6">
<div class="cell-output-display">
<div>
<p>
</p><pre class="mermaid mermaid-js" data-tooltip-selector="#mermaid-tooltip-1">graph LR
A{"🤗 Accelerate#32;"}
A --> B["Launching<br>Interface#32;"]
A --> C["Training Library#32;"]
A --> D["Big Model<br>Inference#32;"]
</pre>
<div id="mermaid-tooltip-1" class="mermaidTooltip">
</div>
<p></p>
</div>
</div>
</div>
</section>
<section>
<section id="a-launching-interface" class="title-slide slide level1 center">
<h1>A Launching Interface</h1>
<p>Can’t I just use <code>python do_the_thing.py</code>?</p>
</section>
<section id="a-launching-interface-1" class="slide level2">
<h2>A Launching Interface</h2>
<p>Launching scripts in different environments is complicated:</p>
<ul>
<li><div class="sourceCode" id="cb1"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb1-1"><a href="#cb1-1"></a><span class="ex">python</span> script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li>
<li><div class="sourceCode" id="cb2"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb2-1"><a href="#cb2-1"></a><span class="ex">torchrun</span> <span class="at">--nnodes</span><span class="op">=</span>1 <span class="at">--nproc_per_node</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li>
<li><div class="sourceCode" id="cb3"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb3-1"><a href="#cb3-1"></a><span class="ex">deepspeed</span> <span class="at">--num_gpus</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li>
</ul>
<p>And more!</p>
</section>
<section id="a-launching-interface-2" class="slide level2">
<h2>A Launching Interface</h2>
<p>But it doesn’t have to be:</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb4-1"><a href="#cb4-1"></a><span class="ex">accelerate</span> launch script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>A single command to launch with <code>DeepSpeed</code>, Fully Sharded Data Parallelism, across single and multi CPUs and GPUs, and to train on TPUs<sup>1</sup> too!</p>
<aside><ol class="aside-footnotes"><li id="fn1"><p>Without needing to modify your code and create a <code>_mp_fn</code></p></li></ol></aside></section>
<section id="a-launching-interface-3" class="slide level2">
<h2>A Launching Interface</h2>
<p>Generate a device-specific configuration through <code>accelerate config</code></p>
<img data-src="CLI.gif" class="r-stretch"></section>
<section id="a-launching-interface-4" class="slide level2">
<h2>A Launching Interface</h2>
<p>Or don’t. <code>accelerate config</code> doesn’t <em>have</em> to be done!</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb5-1"><a href="#cb5-1"></a><span class="ex">torchrun</span> <span class="at">--nnodes</span><span class="op">=</span>1 <span class="at">--nproc_per_node</span><span class="op">=</span>2 script.py</span>
<span id="cb5-2"><a href="#cb5-2"></a><span class="ex">accelerate</span> launch <span class="at">--multi_gpu</span> <span class="at">--nproc_per_node</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>A quick default configuration can be made too:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb6-1"><a href="#cb6-1"></a><span class="ex">accelerate</span> config default</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section>
<section id="a-launching-interface-5" class="slide level2">
<h2>A Launching Interface</h2>
<p>With the <code>notebook_launcher</code> it’s also possible to launch code directly from your Jupyter environment too!</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb7-1"><a href="#cb7-1"></a><span class="im">from</span> accelerate <span class="im">import</span> notebook_launcher</span>
<span id="cb7-2"><a href="#cb7-2"></a>notebook_launcher(</span>
<span id="cb7-3"><a href="#cb7-3"></a> training_loop_function, </span>
<span id="cb7-4"><a href="#cb7-4"></a> args, </span>
<span id="cb7-5"><a href="#cb7-5"></a> num_processes<span class="op">=</span><span class="dv">2</span></span>
<span id="cb7-6"><a href="#cb7-6"></a>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="sourceCode" id="cb8"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb8-1"><a href="#cb8-1"></a>Launching training on <span class="dv">2</span> GPUs.</span>
<span id="cb8-2"><a href="#cb8-2"></a>epoch <span class="dv">0</span>: <span class="fl">88.12</span></span>
<span id="cb8-3"><a href="#cb8-3"></a>epoch <span class="dv">1</span>: <span class="fl">91.73</span></span>
<span id="cb8-4"><a href="#cb8-4"></a>epoch <span class="dv">2</span>: <span class="fl">92.58</span></span>
<span id="cb8-5"><a href="#cb8-5"></a>epoch <span class="dv">3</span>: <span class="fl">93.90</span></span>
<span id="cb8-6"><a href="#cb8-6"></a>epoch <span class="dv">4</span>: <span class="fl">94.71</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section></section>
<section>
<section id="a-training-library" class="title-slide slide level1 center">
<h1>A Training Library</h1>
<p>Okay, will <code>accelerate launch</code> make <code>do_the_thing.py</code> use all my GPUs magically?</p>
</section>
<section id="a-training-library-1" class="slide level2">
<h2>A Training Library</h2>
<ul>
<li>Just showed that its possible using <code>accelerate launch</code> to <em>launch</em> a python script in various distributed environments</li>
<li>This does <em>not</em> mean that the script will just “use” that code and still run on the new compute efficiently.</li>
<li>Training on different computes often means <em>many</em> lines of code changed for each specific compute.</li>
<li>🤗 <code>accelerate</code> solves this by ensuring the same code can be ran on a CPU or GPU, multiples, and on TPUs!</li>
</ul>
</section>
<section id="a-training-library-2" class="slide level2">
<h2>A Training Library</h2>
<div class="sourceCode" id="cb9"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
<span id="cb9-2"><a href="#cb9-2"></a> optimizer.zero_grad()</span>
<span id="cb9-3"><a href="#cb9-3"></a> inputs, targets <span class="op">=</span> batch</span>
<span id="cb9-4"><a href="#cb9-4"></a> inputs <span class="op">=</span> inputs.to(device)</span>
<span id="cb9-5"><a href="#cb9-5"></a> targets <span class="op">=</span> targets.to(device)</span>
<span id="cb9-6"><a href="#cb9-6"></a> outputs <span class="op">=</span> model(inputs)</span>
<span id="cb9-7"><a href="#cb9-7"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
<span id="cb9-8"><a href="#cb9-8"></a> loss.backward()</span>
<span id="cb9-9"><a href="#cb9-9"></a> optimizer.step()</span>
<span id="cb9-10"><a href="#cb9-10"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section>
<section id="a-training-library-3" class="slide level2 smaller">
<h2>A Training Library</h2>
<div class="columns">
<div class="column" style="width:43%;">
<p><br><br><br></p>
<div class="sourceCode" id="cb10" data-code-line-numbers="5-6,9"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb10-1"><a href="#cb10-1"></a><span class="co"># For alignment purposes</span></span>
<span id="cb10-2"><a href="#cb10-2"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
<span id="cb10-3"><a href="#cb10-3"></a> optimizer.zero_grad()</span>
<span id="cb10-4"><a href="#cb10-4"></a> inputs, targets <span class="op">=</span> batch</span>
<span id="cb10-5"><a href="#cb10-5"></a> inputs <span class="op">=</span> inputs.to(device)</span>
<span id="cb10-6"><a href="#cb10-6"></a> targets <span class="op">=</span> targets.to(device)</span>
<span id="cb10-7"><a href="#cb10-7"></a> outputs <span class="op">=</span> model(inputs)</span>
<span id="cb10-8"><a href="#cb10-8"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
<span id="cb10-9"><a href="#cb10-9"></a> loss.backward()</span>
<span id="cb10-10"><a href="#cb10-10"></a> optimizer.step()</span>
<span id="cb10-11"><a href="#cb10-11"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div><div class="column" style="width:57%;">
<div class="sourceCode" id="cb11" data-code-line-numbers="1-7,12-13,16"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb11-1"><a href="#cb11-1"></a><span class="im">from</span> accelerate <span class="im">import</span> Accelerator</span>
<span id="cb11-2"><a href="#cb11-2"></a>accelerator <span class="op">=</span> Accelerator()</span>
<span id="cb11-3"><a href="#cb11-3"></a>dataloader, model, optimizer scheduler <span class="op">=</span> (</span>
<span id="cb11-4"><a href="#cb11-4"></a> accelerator.prepare(</span>
<span id="cb11-5"><a href="#cb11-5"></a> dataloader, model, optimizer, scheduler</span>
<span id="cb11-6"><a href="#cb11-6"></a> )</span>
<span id="cb11-7"><a href="#cb11-7"></a>)</span>
<span id="cb11-8"><a href="#cb11-8"></a></span>
<span id="cb11-9"><a href="#cb11-9"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
<span id="cb11-10"><a href="#cb11-10"></a> optimizer.zero_grad()</span>
<span id="cb11-11"><a href="#cb11-11"></a> inputs, targets <span class="op">=</span> batch</span>
<span id="cb11-12"><a href="#cb11-12"></a> <span class="co"># inputs = inputs.to(device)</span></span>
<span id="cb11-13"><a href="#cb11-13"></a> <span class="co"># targets = targets.to(device)</span></span>
<span id="cb11-14"><a href="#cb11-14"></a> outputs <span class="op">=</span> model(inputs)</span>
<span id="cb11-15"><a href="#cb11-15"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
<span id="cb11-16"><a href="#cb11-16"></a> accelerator.backward(loss) <span class="co"># loss.backward()</span></span>
<span id="cb11-17"><a href="#cb11-17"></a> optimizer.step()</span>
<span id="cb11-18"><a href="#cb11-18"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div>
</section>
<section id="a-training-library-4" class="slide level2">
<h2>A Training Library</h2>
<p>What all happened in <code>Accelerator.prepare</code>?</p>
<div>
<ol type="1">
<li class="fragment"><code>Accelerator</code> looked at the configuration</li>
<li class="fragment">The <code>dataloader</code> was converted into one that can dispatch each batch onto a seperate GPU</li>
<li class="fragment">The <code>model</code> was wrapped with the appropriate DDP wrapper from either <code>torch.distributed</code> or <code>torch_xla</code></li>
<li class="fragment">The <code>optimizer</code> and <code>scheduler</code> were both converted into an <code>AcceleratedOptimizer</code> and <code>AcceleratedScheduler</code> which knows how to handle any distributed scenario</li>
</ol>
</div>
</section>
<section id="a-training-library-mixed-precision" class="slide level2">
<h2>A Training Library, Mixed Precision</h2>
<p>🤗 <code>accelerate</code> also supports <em>automatic mixed precision</em>.</p>
<p>Through a single flag to the <code>Accelerator</code> object when calling <code>accelerator.backward()</code> the mixed precision of your choosing (such as <code>bf16</code> or <code>fp16</code>) will be applied:</p>
<div class="sourceCode" id="cb12" data-code-line-numbers="2,9"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb12-1"><a href="#cb12-1"></a><span class="im">from</span> accelerate <span class="im">import</span> Accelerator</span>
<span id="cb12-2"><a href="#cb12-2"></a>accelerator <span class="op">=</span> Accelerator(mixed_precision<span class="op">=</span><span class="st">"fp16"</span>)</span>
<span id="cb12-3"><a href="#cb12-3"></a>...</span>
<span id="cb12-4"><a href="#cb12-4"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
<span id="cb12-5"><a href="#cb12-5"></a> optimizer.zero_grad()</span>
<span id="cb12-6"><a href="#cb12-6"></a> inputs, targets <span class="op">=</span> batch</span>
<span id="cb12-7"><a href="#cb12-7"></a> outputs <span class="op">=</span> model(inputs)</span>
<span id="cb12-8"><a href="#cb12-8"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
<span id="cb12-9"><a href="#cb12-9"></a> accelerator.backward(loss)</span>
<span id="cb12-10"><a href="#cb12-10"></a> optimizer.step()</span>
<span id="cb12-11"><a href="#cb12-11"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section>
<section id="a-training-library-gradient-accumulation" class="slide level2">
<h2>A Training Library, Gradient Accumulation</h2>
<p>Gradient accumulation in distributed setups often need extra care to ensure gradients are aligned when they need to be and the backward pass is computationally efficient.</p>
<p>🤗 <code>accelerate</code> can just easily handle this for you:</p>
<div class="sourceCode" id="cb13" data-code-line-numbers="2,5"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb13-1"><a href="#cb13-1"></a><span class="im">from</span> accelerate <span class="im">import</span> Accelerator</span>
<span id="cb13-2"><a href="#cb13-2"></a>accelerator <span class="op">=</span> Accelerator(gradient_accumulation_steps<span class="op">=</span><span class="dv">4</span>)</span>
<span id="cb13-3"><a href="#cb13-3"></a>...</span>
<span id="cb13-4"><a href="#cb13-4"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
<span id="cb13-5"><a href="#cb13-5"></a> <span class="cf">with</span> accelerator.accumulate(model):</span>
<span id="cb13-6"><a href="#cb13-6"></a> optimizer.zero_grad()</span>
<span id="cb13-7"><a href="#cb13-7"></a> inputs, targets <span class="op">=</span> batch</span>
<span id="cb13-8"><a href="#cb13-8"></a> outputs <span class="op">=</span> model(inputs)</span>
<span id="cb13-9"><a href="#cb13-9"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
<span id="cb13-10"><a href="#cb13-10"></a> accelerator.backward(loss)</span>
<span id="cb13-11"><a href="#cb13-11"></a> optimizer.step()</span>
<span id="cb13-12"><a href="#cb13-12"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section>
<section id="a-training-library-gradient-accumulation-1" class="slide level2">
<h2>A Training Library, Gradient Accumulation</h2>
<div class="sourceCode" id="cb14" data-code-line-numbers="5-7,10,11,12,15"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb14-1"><a href="#cb14-1"></a>ddp_model, dataloader <span class="op">=</span> accelerator.prepare(model, dataloader)</span>
<span id="cb14-2"><a href="#cb14-2"></a></span>
<span id="cb14-3"><a href="#cb14-3"></a><span class="cf">for</span> index, batch <span class="kw">in</span> <span class="bu">enumerate</span>(dataloader):</span>
<span id="cb14-4"><a href="#cb14-4"></a> inputs, targets <span class="op">=</span> batch</span>
<span id="cb14-5"><a href="#cb14-5"></a> <span class="cf">if</span> index <span class="op">!=</span> (<span class="bu">len</span>(dataloader)<span class="op">-</span><span class="dv">1</span>) <span class="kw">or</span> (index <span class="op">%</span> <span class="dv">4</span>) <span class="op">!=</span> <span class="dv">0</span>:</span>
<span id="cb14-6"><a href="#cb14-6"></a> <span class="co"># Gradients don't sync</span></span>
<span id="cb14-7"><a href="#cb14-7"></a> <span class="cf">with</span> accelerator.no_sync(model):</span>
<span id="cb14-8"><a href="#cb14-8"></a> outputs <span class="op">=</span> ddp_model(inputs)</span>
<span id="cb14-9"><a href="#cb14-9"></a> loss <span class="op">=</span> loss_func(outputs, targets)</span>
<span id="cb14-10"><a href="#cb14-10"></a> accelerator.backward(loss)</span>
<span id="cb14-11"><a href="#cb14-11"></a> <span class="cf">else</span>:</span>
<span id="cb14-12"><a href="#cb14-12"></a> <span class="co"># Gradients finally sync</span></span>
<span id="cb14-13"><a href="#cb14-13"></a> outputs <span class="op">=</span> ddp_model(inputs)</span>
<span id="cb14-14"><a href="#cb14-14"></a> loss <span class="op">=</span> loss_func(outputs)</span>
<span id="cb14-15"><a href="#cb14-15"></a> accelerator.backward(loss)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section></section>
<section>
<section id="big-model-inference" class="title-slide slide level1 center">
<h1>Big Model Inference</h1>
<p>Stable Diffusion taking the world by storm</p>
</section>
<section id="bigger-models-higher-compute" class="slide level2">
<h2>Bigger Models == Higher Compute</h2>
<p>As more large models were being released, Hugging Face quickly realized there must be a way to continue our decentralization of Machine Learning and have the day-to-day programmer be able to leverage these big models.</p>
<p>Born out of this effort by Sylvain Gugger:</p>
<p>🤗 Accelerate: Big Model Inference.</p>
</section>
<section id="the-basic-premise" class="slide level2">
<h2>The Basic Premise</h2>
<div>
<ul>
<li class="fragment"><p>In PyTorch, there exists the <code>meta</code> device.</p></li>
<li class="fragment"><p>Super small footprint to load in huge models quickly by not loading in their weights immediatly.</p></li>
<li class="fragment"><p>As an input gets passed through each layer, we can load and unload <em>parts</em> of the PyTorch model quickly so that only a small portion of the big model is loaded in at a single time.</p></li>
<li class="fragment"><p>The end result? Stable Diffusion v1 can be ran on < 800mb of vRAM</p></li>
</ul>
</div>
</section>
<section id="the-code" class="slide level2">
<h2>The Code</h2>
<p>Generally you start with something like so:</p>
<div class="sourceCode" id="cb15"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb15-1"><a href="#cb15-1"></a><span class="im">import</span> torch</span>
<span id="cb15-2"><a href="#cb15-2"></a></span>
<span id="cb15-3"><a href="#cb15-3"></a>my_model <span class="op">=</span> ModelClass(...)</span>
<span id="cb15-4"><a href="#cb15-4"></a>state_dict <span class="op">=</span> torch.load(checkpoint_file)</span>
<span id="cb15-5"><a href="#cb15-5"></a>my_model.load_state_dict(state_dict)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>But this has issues:</p>
<ol type="1">
<li>The full version of the model is loaded at <code>3</code></li>
<li>Another version of the model is loaded into memory at <code>4</code></li>
</ol>
<p>If a 6 <em>billion</em> parameter model is being loaded, each model class has a dictionary of 24GB so 48GB of vRAM is needed</p>
</section>
<section id="empty-model-weights" class="slide level2">
<h2>Empty Model Weights</h2>
<p>We can fix step 1 by loading in an empty model skeleton at first:</p>
<div class="sourceCode" id="cb16" data-code-line-numbers="1,3-4"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb16-1"><a href="#cb16-1"></a><span class="im">from</span> accelerate <span class="im">import</span> init_empty_weights</span>
<span id="cb16-2"><a href="#cb16-2"></a></span>
<span id="cb16-3"><a href="#cb16-3"></a><span class="cf">with</span> init_empty_weights():</span>
<span id="cb16-4"><a href="#cb16-4"></a> my_model <span class="op">=</span> ModelClass(...)</span>
<span id="cb16-5"><a href="#cb16-5"></a>state_dict <span class="op">=</span> torch.load(checkpoint_file)</span>
<span id="cb16-6"><a href="#cb16-6"></a>my_model.load_state_dict(state_dict)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="callout callout-important callout-captioned callout-style-default">
<div class="callout-body">
<div class="callout-caption">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<p><strong>This code will not run</strong></p>
</div>
<div class="callout-content">
<p>It is likely that just calling <code>my_model(x)</code> will fail as not all tensor operations are supported on the <code>meta</code> device.</p>
</div>
</div>
</div>
</section>
<section id="sharded-checkpoints---the-concept" class="slide level2">
<h2>Sharded Checkpoints - The Concept</h2>
<p>The next step is to have “Sharded Checkpoints” saved for your model.</p>
<p>Basically smaller chunks of your model weights stored that can be brought in at any particular time.</p>
<p>This reduces the amount of memory step 2 takes in since we can just load in a “chunk” of the model at a time, then swap it out for a new chunk through PyTorch hooks</p>
</section>
<section id="sharded-checkpoints---the-code" class="slide level2">
<h2>Sharded Checkpoints - The Code</h2>
<div class="sourceCode" id="cb17" data-code-line-numbers="1,6-8"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb17-1"><a href="#cb17-1"></a><span class="im">from</span> accelerate <span class="im">import</span> init_empty_weights, load_checkpoint_and_dispatch</span>
<span id="cb17-2"><a href="#cb17-2"></a></span>
<span id="cb17-3"><a href="#cb17-3"></a><span class="cf">with</span> init_empty_weights():</span>
<span id="cb17-4"><a href="#cb17-4"></a> my_model <span class="op">=</span> ModelClass(...)</span>
<span id="cb17-5"><a href="#cb17-5"></a></span>
<span id="cb17-6"><a href="#cb17-6"></a>my_model <span class="op">=</span> load_checkpoint_and_dispatch(</span>
<span id="cb17-7"><a href="#cb17-7"></a> my_model, <span class="st">"sharded-weights"</span>, device_map<span class="op">=</span><span class="st">"auto"</span></span>
<span id="cb17-8"><a href="#cb17-8"></a>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p><code>device_map="auto"</code> will tell 🤗 Accelerate that it should determine where to put each layer of the model:</p>
<ol type="1">
<li>Maximum space on the GPU(s)</li>
<li>Maximum space on the CPU(s)</li>
<li>Utilize disk space through memory-mapped tensors</li>
</ol>
</section>
<section id="big-model-inference-put-together" class="slide level2">
<h2>Big Model Inference Put Together</h2>
<div class="sourceCode" id="cb18"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb18-1"><a href="#cb18-1"></a><span class="im">from</span> accelerate <span class="im">import</span> init_empty_weights, load_checkpoint_and_dispatch</span>
<span id="cb18-2"><a href="#cb18-2"></a></span>
<span id="cb18-3"><a href="#cb18-3"></a><span class="cf">with</span> init_empty_weights():</span>
<span id="cb18-4"><a href="#cb18-4"></a> my_model <span class="op">=</span> ModelClass(...)</span>
<span id="cb18-5"><a href="#cb18-5"></a></span>
<span id="cb18-6"><a href="#cb18-6"></a>my_model <span class="op">=</span> load_checkpoint_and_dispatch(</span>
<span id="cb18-7"><a href="#cb18-7"></a> my_model, <span class="st">"sharded-weights"</span>, device_map<span class="op">=</span><span class="st">"auto"</span></span>
<span id="cb18-8"><a href="#cb18-8"></a>)</span>
<span id="cb18-9"><a href="#cb18-9"></a>my_model.<span class="bu">eval</span>()</span>
<span id="cb18-10"><a href="#cb18-10"></a></span>
<span id="cb18-11"><a href="#cb18-11"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
<span id="cb18-12"><a href="#cb18-12"></a> output <span class="op">=</span> my_model(batch)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section>
<section id="is-there-an-easier-way" class="slide level2">
<h2>Is there an easier way?</h2>
<p>The <code>transformers</code> library combined with the Hub makes all this code wrapping much easier for you with the <code>pipeline</code></p>
<div class="sourceCode" id="cb19"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb19-1"><a href="#cb19-1"></a><span class="im">import</span> torch</span>
<span id="cb19-2"><a href="#cb19-2"></a><span class="im">from</span> transformers <span class="im">import</span> pipeline</span>
<span id="cb19-3"><a href="#cb19-3"></a>pipe <span class="op">=</span> pipeline(</span>
<span id="cb19-4"><a href="#cb19-4"></a> task<span class="op">=</span><span class="st">"text-generation"</span>,</span>
<span id="cb19-5"><a href="#cb19-5"></a> model<span class="op">=</span><span class="st">"EleutherAI/gpt-j-6B"</span>,</span>
<span id="cb19-6"><a href="#cb19-6"></a> device_map<span class="op">=</span><span class="st">"auto"</span>,</span>
<span id="cb19-7"><a href="#cb19-7"></a> torch_dtype<span class="op">=</span>torch.float16</span>
<span id="cb19-8"><a href="#cb19-8"></a>)</span>
<span id="cb19-9"><a href="#cb19-9"></a></span>
<span id="cb19-10"><a href="#cb19-10"></a>text <span class="op">=</span> pipe(<span class="st">"This is some generated text, I think"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section></section>
<section>
<section id="what-about-stable-diffusion" class="title-slide slide level1 center">
<h1>What about Stable Diffusion?</h1>
<p>A demo with <code>diffusers</code> & Weights and Biases</p>
</section>
<section id="some-handy-resources" class="slide level2">
<h2>Some Handy Resources</h2>
<ul>
<li><a href="https://hf.co/docs/accelerate">🤗 Accelerate documentation</a></li>
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/launch">Launching distributed code</a></li>
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/notebook">Distributed code and Jupyter Notebooks</a></li>
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/migration">Migrating to 🤗 Accelerate easily</a></li>
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/big_modeling">Big Model Inference tutorial</a></li>
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/deepspeed">DeepSpeed and 🤗 Accelerate</a></li>
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/fsdp">Fully Sharded Data Parallelism and 🤗 Accelerate</a></li>
</ul>
<div class="footer footer-default">
</div>
</section></section>
</div>
</div>
<script>window.backupDefine = window.define; window.define = undefined;</script>
<script src="Accelerate_files/libs/revealjs/dist/reveal.js"></script>
<!-- reveal.js plugins -->
<script src="Accelerate_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.js"></script>
<script src="Accelerate_files/libs/revealjs/plugin/pdf-export/pdfexport.js"></script>
<script src="Accelerate_files/libs/revealjs/plugin/reveal-menu/menu.js"></script>
<script src="Accelerate_files/libs/revealjs/plugin/reveal-menu/quarto-menu.js"></script>
<script src="Accelerate_files/libs/revealjs/plugin/quarto-support/support.js"></script>
<script src="Accelerate_files/libs/revealjs/plugin/notes/notes.js"></script>
<script src="Accelerate_files/libs/revealjs/plugin/search/search.js"></script>
<script src="Accelerate_files/libs/revealjs/plugin/zoom/zoom.js"></script>
<script src="Accelerate_files/libs/revealjs/plugin/math/math.js"></script>
<script>window.define = window.backupDefine; window.backupDefine = undefined;</script>
<script>
// Full list of configuration options available at:
// https://revealjs.com/config/
Reveal.initialize({
'controlsAuto': true,
'previewLinksAuto': false,
'smaller': false,
'pdfSeparateFragments': false,
'autoAnimateEasing': "ease",
'autoAnimateDuration': 1,
'autoAnimateUnmatched': true,
'menu': {"side":"left","useTextContentForMissingTitles":true,"markers":false,"loadIcons":false,"custom":[{"title":"Tools","icon":"<i class=\"fas fa-gear\"></i>","content":"<ul class=\"slide-menu-items\">\n<li class=\"slide-tool-item active\" data-item=\"0\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.fullscreen(event)\"><kbd>f</kbd> Fullscreen</a></li>\n<li class=\"slide-tool-item\" data-item=\"1\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.speakerMode(event)\"><kbd>s</kbd> Speaker View</a></li>\n<li class=\"slide-tool-item\" data-item=\"2\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.overview(event)\"><kbd>o</kbd> Slide Overview</a></li>\n<li class=\"slide-tool-item\" data-item=\"3\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.overview(event)\"><kbd>e</kbd> PDF Export Mode</a></li>\n<li class=\"slide-tool-item\" data-item=\"4\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.keyboardHelp(event)\"><kbd>?</kbd> Keyboard Help</a></li>\n</ul>"}],"openButton":true},
'smaller': false,
// Display controls in the bottom right corner
controls: false,
// Help the user learn the controls by providing hints, for example by
// bouncing the down arrow when they first encounter a vertical slide
controlsTutorial: false,
// Determines where controls appear, "edges" or "bottom-right"
controlsLayout: 'edges',
// Visibility rule for backwards navigation arrows; "faded", "hidden"
// or "visible"
controlsBackArrows: 'faded',
// Display a presentation progress bar
progress: true,
// Display the page number of the current slide
slideNumber: false,
// 'all', 'print', or 'speaker'
showSlideNumber: 'all',
// Add the current slide number to the URL hash so that reloading the
// page/copying the URL will return you to the same slide
hash: true,
// Start with 1 for the hash rather than 0
hashOneBasedIndex: false,
// Flags if we should monitor the hash and change slides accordingly
respondToHashChanges: true,
// Push each slide change to the browser history
history: true,
// Enable keyboard shortcuts for navigation
keyboard: true,
// Enable the slide overview mode
overview: true,
// Disables the default reveal.js slide layout (scaling and centering)
// so that you can use custom CSS layout
disableLayout: false,
// Vertical centering of slides
center: false,
// Enables touch navigation on devices with touch input
touch: true,
// Loop the presentation
loop: false,
// Change the presentation direction to be RTL
rtl: false,
// see https://revealjs.com/vertical-slides/#navigation-mode
navigationMode: 'linear',
// Randomizes the order of slides each time the presentation loads
shuffle: false,
// Turns fragments on and off globally
fragments: true,
// Flags whether to include the current fragment in the URL,
// so that reloading brings you to the same fragment position
fragmentInURL: false,
// Flags if the presentation is running in an embedded mode,
// i.e. contained within a limited portion of the screen
embedded: false,
// Flags if we should show a help overlay when the questionmark
// key is pressed
help: true,
// Flags if it should be possible to pause the presentation (blackout)
pause: true,
// Flags if speaker notes should be visible to all viewers
showNotes: false,
// Global override for autoplaying embedded media (null/true/false)
autoPlayMedia: null,
// Global override for preloading lazy-loaded iframes (null/true/false)
preloadIframes: null,
// Number of milliseconds between automatically proceeding to the
// next slide, disabled when set to 0, this value can be overwritten
// by using a data-autoslide attribute on your slides
autoSlide: 0,
// Stop auto-sliding after user input
autoSlideStoppable: true,
// Use this method for navigation when auto-sliding
autoSlideMethod: null,
// Specify the average time in seconds that you think you will spend
// presenting each slide. This is used to show a pacing timer in the
// speaker view
defaultTiming: null,
// Enable slide navigation via mouse wheel
mouseWheel: false,
// The display mode that will be used to show slides
display: 'block',
// Hide cursor if inactive
hideInactiveCursor: true,
// Time before the cursor is hidden (in ms)
hideCursorTime: 5000,
// Opens links in an iframe preview overlay
previewLinks: false,
// Transition style (none/fade/slide/convex/concave/zoom)
transition: 'none',
// Transition speed (default/fast/slow)
transitionSpeed: 'default',
// Transition style for full page slide backgrounds
// (none/fade/slide/convex/concave/zoom)
backgroundTransition: 'none',
// Number of slides away from the current that are visible
viewDistance: 3,
// Number of slides away from the current that are visible on mobile
// devices. It is advisable to set this to a lower number than
// viewDistance in order to save resources.
mobileViewDistance: 2,
// The "normal" size of the presentation, aspect ratio will be preserved
// when the presentation is scaled to fit different resolutions. Can be
// specified using percentage units.
width: 1050,
height: 700,
// Factor of the display size that should remain empty around the content
margin: 0.1,
math: {
mathjax: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js',
config: 'TeX-AMS_HTML-full',
tex2jax: {
inlineMath: [['\\(','\\)']],
displayMath: [['\\[','\\]']],
balanceBraces: true,
processEscapes: false,
processRefs: true,
processEnvironments: true,
preview: 'TeX',
skipTags: ['script','noscript','style','textarea','pre','code'],
ignoreClass: 'tex2jax_ignore',
processClass: 'tex2jax_process'
},
},
// reveal.js plugins
plugins: [QuartoLineHighlight, PdfExport, RevealMenu, QuartoSupport,
RevealMath,
RevealNotes,
RevealSearch,
RevealZoom
]
});
</script>
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const tabsets = window.document.querySelectorAll(".panel-tabset-tabby")
tabsets.forEach(function(tabset) {
const tabby = new Tabby('#' + tabset.id);
});
const clipboard = new window.ClipboardJS('.code-copy-button', {
target: function(trigger) {
return trigger.previousElementSibling;
}
});
clipboard.on('success', function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
let tooltip;
if (window.bootstrap) {
button.setAttribute("data-bs-toggle", "tooltip");
button.setAttribute("data-bs-placement", "left");
button.setAttribute("data-bs-title", "Copied!");
tooltip = new bootstrap.Tooltip(button,
{ trigger: "manual",
customClass: "code-copy-button-tooltip",
offset: [0, -8]});
tooltip.show();
}
setTimeout(function() {
if (tooltip) {
tooltip.hide();
button.removeAttribute("data-bs-title");
button.removeAttribute("data-bs-toggle");
button.removeAttribute("data-bs-placement");
}
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
});
function tippyHover(el, contentFn) {
const config = {
allowHTML: true,
content: contentFn,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.closest('section.slide') || el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto-reveal',
placement: 'bottom-start'
};
config['offset'] = [0,0];
config['maxWidth'] = 700;
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
// use id or data attribute instead here
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
return note.innerHTML;
});
}
const findCites = (el) => {
const parentEl = el.parentElement;
if (parentEl) {
const cites = parentEl.dataset.cites;
if (cites) {
return {
el,
cites: cites.split(' ')
};
} else {
return findCites(el.parentElement)
}
} else {
return undefined;
}
};
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
for (var i=0; i<bibliorefs.length; i++) {
const ref = bibliorefs[i];
const citeInfo = findCites(ref);
if (citeInfo) {
tippyHover(citeInfo.el, function() {
var popup = window.document.createElement('div');
citeInfo.cites.forEach(function(cite) {
var citeDiv = window.document.createElement('div');
citeDiv.classList.add('hanging-indent');
citeDiv.classList.add('csl-entry');
var biblioDiv = window.document.getElementById('ref-' + cite);
if (biblioDiv) {
citeDiv.innerHTML = biblioDiv.innerHTML;
}
popup.appendChild(citeDiv);
});
return popup.innerHTML;
});
}
}
});
</script>
</body></html> |