File size: 18,606 Bytes
c43c604 8c1d0f7 c43c604 f5567a0 c43c604 8c1d0f7 c43c604 8c1d0f7 c43c604 8c1d0f7 31cd561 8c1d0f7 31cd561 8c1d0f7 c43c604 89af869 c43c604 31cd561 c43c604 31cd561 89af869 c43c604 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 |
{
"cells": [
{
"cell_type": "markdown",
"id": "ff5c7a97-02d5-4aea-8bd5-59be5e62bf01",
"metadata": {},
"source": [
"---\n",
"title: \"Accelerate, Three Powerful Sublibraries for PyTorch\"\n",
"author: \"Zachary Mueller\"\n",
"format: \n",
" revealjs:\n",
" theme: moon\n",
" fig-format: png\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "45e61402-f734-4500-8eb6-fcdd6f17a0d4",
"metadata": {},
"source": [
"## Who am I?\n",
"\n",
"- Zachary Mueller\n",
"- Deep Learning Software Engineer at π€\n",
"- API design geek"
]
},
{
"cell_type": "markdown",
"id": "8f9864d2-5787-4af3-a08d-b372e5851a0f",
"metadata": {},
"source": [
"## What is π€ Accelerate?"
]
},
{
"cell_type": "markdown",
"id": "166b148a-e2f0-46b0-bc61-ac6e81da5ac5",
"metadata": {},
"source": [
"```{mermaid}\n",
"%%| fig-height: 6\n",
"graph LR\n",
" A{\"π€ Accelerate#32;\"}\n",
" A --> B[\"Launching<br>Interface#32;\"]\n",
" A --> C[\"Training Library#32;\"]\n",
" A --> D[\"Big Model<br>Inference#32;\"]\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "84d6fd12-18cd-4448-9123-821133673b95",
"metadata": {},
"source": [
"# A Launching Interface\n",
"\n",
"Can't I just use `python do_the_thing.py`?"
]
},
{
"cell_type": "markdown",
"id": "e5488645-daa3-4353-be9f-7af765a52666",
"metadata": {},
"source": [
"## A Launching Interface\n",
"\n",
"Launching scripts in different environments is complicated:"
]
},
{
"cell_type": "markdown",
"id": "ce856633-1909-4f18-9610-e934194dd584",
"metadata": {},
"source": [
"- ```bash \n",
"python script.py\n",
"```\n",
"\n",
"- ```bash \n",
"torchrun --nnodes=1 --nproc_per_node=2 script.py\n",
"```\n",
"\n",
"- ```bash \n",
"deepspeed --num_gpus=2 script.py\n",
"```\n",
"\n",
"And more!"
]
},
{
"cell_type": "markdown",
"id": "4e6414d0-f8f8-4bd2-b06f-fe7f848320f1",
"metadata": {
"tags": []
},
"source": [
"## A Launching Interface\n",
"\n",
"But it doesn't have to be:"
]
},
{
"cell_type": "markdown",
"id": "5dfd30c0-7240-4a13-9b51-061c4762b37e",
"metadata": {},
"source": [
"```bash\n",
"accelerate launch script.py\n",
"```\n",
"\n",
"A single command to launch with `DeepSpeed`, Fully Sharded Data Parallelism, across single and multi CPUs and GPUs, and to train on TPUs[^1] too! \n",
"\n",
"[^1]: Without needing to modify your code and create a `_mp_fn`"
]
},
{
"cell_type": "markdown",
"id": "c0760c9a-4307-4143-9adc-bf1ce2ed4460",
"metadata": {},
"source": [
"## A Launching Interface\n",
"\n",
"Generate a device-specific configuration through `accelerate config`\n",
"\n",
"![](CLI.gif)"
]
},
{
"cell_type": "markdown",
"id": "b0f1dc7a-ec43-48ba-b0a0-1331981733d0",
"metadata": {},
"source": [
"## A Launching Interface\n",
"\n",
"Or don't. `accelerate config` doesn't *have* to be done!\n",
"\n",
"```bash\n",
"torchrun --nnodes=1 --nproc_per_node=2 script.py\n",
"accelerate launch --multi_gpu --nproc_per_node=2 script.py\n",
"```\n",
"\n",
"A quick default configuration can be made too:\n",
"\n",
"```bash \n",
"accelerate config default\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "ff8d2c3d-5a08-4e5b-9896-1a0bcb77b5a6",
"metadata": {},
"source": [
"## A Launching Interface"
]
},
{
"cell_type": "markdown",
"id": "a395af44-96f8-4f3a-ac47-3f65a6062d24",
"metadata": {},
"source": [
"With the `notebook_launcher` it's also possible to launch code directly from your Jupyter environment too!"
]
},
{
"cell_type": "markdown",
"id": "99b14b46-6be5-4ef4-a3ee-82876b1d7802",
"metadata": {},
"source": [
"```python\n",
"from accelerate import notebook_launcher\n",
"notebook_launcher(\n",
" training_loop_function, \n",
" args, \n",
" num_processes=2\n",
")\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "a50e27a7-4235-4695-bf99-59c0f3d0e451",
"metadata": {},
"source": [
"```python\n",
"Launching training on 2 GPUs.\n",
"epoch 0: 88.12\n",
"epoch 1: 91.73\n",
"epoch 2: 92.58\n",
"epoch 3: 93.90\n",
"epoch 4: 94.71\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "2db4e66d-d8b0-4f3f-9236-e86c1c3ea5d2",
"metadata": {},
"source": [
"# A Training Library\n",
"\n",
"Okay, will `accelerate launch` make `do_the_thing.py` use all my GPUs magically?"
]
},
{
"cell_type": "markdown",
"id": "1cd093ef-d3ce-4ea4-89a1-be145fbe5cc0",
"metadata": {},
"source": [
"## A Training Library\n",
"\n",
"- Just showed that its possible using `accelerate launch` to *launch* a python script in various distributed environments\n",
"- This does *not* mean that the script will just \"use\" that code and still run on the new compute efficiently.\n",
"- Training on different computes often means *many* lines of code changed for each specific compute.\n",
"- π€ `accelerate` solves this by ensuring the same code can be ran on a CPU or GPU, multiples, and on TPUs!"
]
},
{
"cell_type": "markdown",
"id": "c0b12eb9-feeb-4040-a784-8e78966165be",
"metadata": {},
"source": [
"## A Training Library\n",
"\n",
"\n",
"```{.python}\n",
"for batch in dataloader:\n",
" optimizer.zero_grad()\n",
" inputs, targets = batch\n",
" inputs = inputs.to(device)\n",
" targets = targets.to(device)\n",
" outputs = model(inputs)\n",
" loss = loss_function(outputs, targets)\n",
" loss.backward()\n",
" optimizer.step()\n",
" scheduler.step()\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "bbb72602-f86f-42f6-ab44-05fbd0dfcecd",
"metadata": {},
"source": [
"## A Training Library {.smaller}"
]
},
{
"cell_type": "markdown",
"id": "b5f90b84-fff5-4c14-bde7-d1efbcc37781",
"metadata": {},
"source": [
":::: {.columns}\n",
"::: {.column width=\"43%\"}\n",
"<br><br><br>\n",
"```{.python code-line-numbers=\"5-6,9\"}\n",
"# For alignment purposes\n",
"for batch in dataloader:\n",
" optimizer.zero_grad()\n",
" inputs, targets = batch\n",
" inputs = inputs.to(device)\n",
" targets = targets.to(device)\n",
" outputs = model(inputs)\n",
" loss = loss_function(outputs, targets)\n",
" loss.backward()\n",
" optimizer.step()\n",
" scheduler.step()\n",
"```\n",
":::\n",
"::: {.column width=\"57%\"}\n",
"```{.python code-line-numbers=\"1-7,12-13,16\"}\n",
"from accelerate import Accelerator\n",
"accelerator = Accelerator()\n",
"dataloader, model, optimizer scheduler = (\n",
" accelerator.prepare(\n",
" dataloader, model, optimizer, scheduler\n",
" )\n",
")\n",
"\n",
"for batch in dataloader:\n",
" optimizer.zero_grad()\n",
" inputs, targets = batch\n",
" # inputs = inputs.to(device)\n",
" # targets = targets.to(device)\n",
" outputs = model(inputs)\n",
" loss = loss_function(outputs, targets)\n",
" accelerator.backward(loss) # loss.backward()\n",
" optimizer.step()\n",
" scheduler.step()\n",
"```\n",
":::\n",
"\n",
"::::"
]
},
{
"cell_type": "markdown",
"id": "60c90913-2542-4b1d-8121-b2228c8a2ef7",
"metadata": {
"tags": []
},
"source": [
"## A Training Library\n",
"\n",
"What all happened in `Accelerator.prepare`?\n",
"\n",
"::: {.incremental}\n",
"1. `Accelerator` looked at the configuration\n",
"2. The `dataloader` was converted into one that can dispatch each batch onto a seperate GPU\n",
"3. The `model` was wrapped with the appropriate DDP wrapper from either `torch.distributed` or `torch_xla`\n",
"4. The `optimizer` and `scheduler` were both converted into an `AcceleratedOptimizer` and `AcceleratedScheduler` which knows how to handle any distributed scenario\n",
":::"
]
},
{
"cell_type": "markdown",
"id": "59400a16-bce7-4a0a-8548-effd3c4c6cae",
"metadata": {},
"source": [
"## A Training Library, Mixed Precision\n",
"\n",
"π€ `accelerate` also supports *automatic mixed precision*. \n",
"\n",
"Through a single flag to the `Accelerator` object when calling `accelerator.backward()` the mixed precision of your choosing (such as `bf16` or `fp16`) will be applied:\n",
"\n",
"```{.python code-line-numbers=\"2,9\"}\n",
"from accelerate import Accelerator\n",
"accelerator = Accelerator(mixed_precision=\"fp16\")\n",
"...\n",
"for batch in dataloader:\n",
" optimizer.zero_grad()\n",
" inputs, targets = batch\n",
" outputs = model(inputs)\n",
" loss = loss_function(outputs, targets)\n",
" accelerator.backward(loss)\n",
" optimizer.step()\n",
" scheduler.step()\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "fde7ae10-4fbd-4e25-8f5d-9d47c849966d",
"metadata": {},
"source": [
"## A Training Library, Gradient Accumulation\n",
"\n",
"Gradient accumulation in distributed setups often need extra care to ensure gradients are aligned when they need to be and the backward pass is computationally efficient.\n",
"\n",
"π€ `accelerate` can just easily handle this for you:\n",
"\n",
"```{.python code-line-numbers=\"2,5\"}\n",
"from accelerate import Accelerator\n",
"accelerator = Accelerator(gradient_accumulation_steps=4)\n",
"...\n",
"for batch in dataloader:\n",
" with accelerator.accumulate(model):\n",
" optimizer.zero_grad()\n",
" inputs, targets = batch\n",
" outputs = model(inputs)\n",
" loss = loss_function(outputs, targets)\n",
" accelerator.backward(loss)\n",
" optimizer.step()\n",
" scheduler.step()\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "13f2d1e7-1e50-4a28-b7b4-55e09e15c176",
"metadata": {},
"source": [
"## A Training Library, Gradient Accumulation\n",
"\n",
"```{.python code-line-numbers=\"5-7,10,11,12,15\"}\n",
"ddp_model, dataloader = accelerator.prepare(model, dataloader)\n",
"\n",
"for index, batch in enumerate(dataloader):\n",
" inputs, targets = batch\n",
" if index != (len(dataloader)-1) or (index % 4) != 0:\n",
" # Gradients don't sync\n",
" with accelerator.no_sync(model):\n",
" outputs = ddp_model(inputs)\n",
" loss = loss_func(outputs, targets)\n",
" accelerator.backward(loss)\n",
" else:\n",
" # Gradients finally sync\n",
" outputs = ddp_model(inputs)\n",
" loss = loss_func(outputs)\n",
" accelerator.backward(loss)\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "93575b12-8000-4e8c-81fb-74af415fd76b",
"metadata": {},
"source": [
"# Big Model Inference\n",
"\n",
"Stable Diffusion taking the world by storm"
]
},
{
"cell_type": "markdown",
"id": "b3026c5d-c051-4eac-a4be-af6559294225",
"metadata": {},
"source": [
"## Bigger Models == Higher Compute\n",
"\n",
"As more large models were being released, Hugging Face quickly realized there must be a way to continue our decentralization of Machine Learning and have the day-to-day programmer be able to leverage these big models.\n",
"\n",
"Born out of this effort by Sylvain Gugger: \n",
"\n",
"π€ Accelerate: Big Model Inference."
]
},
{
"cell_type": "markdown",
"id": "303925bf-ce22-4e71-a239-69eb419d54d3",
"metadata": {},
"source": [
"## The Basic Premise\n",
"\n",
"::: {.incremental}\n",
"* In PyTorch, there exists the `meta` device. \n",
"\n",
"* Super small footprint to load in huge models quickly by not loading in their weights immediatly.\n",
"\n",
"* As an input gets passed through each layer, we can load and unload *parts* of the PyTorch model quickly so that only a small portion of the big model is loaded in at a single time.\n",
"\n",
"* The end result? Stable Diffusion v1 can be ran on < 800mb of vRAM\n",
":::"
]
},
{
"cell_type": "markdown",
"id": "c6eef166-c64b-4229-9575-b197c3c03c59",
"metadata": {},
"source": [
"## The Code\n",
"\n",
"Generally you start with something like so:\n",
"\n",
"```python\n",
"import torch\n",
"\n",
"my_model = ModelClass(...)\n",
"state_dict = torch.load(checkpoint_file)\n",
"my_model.load_state_dict(state_dict)\n",
"```\n",
"\n",
"But this has issues:\n",
"\n",
"1. The full version of the model is loaded at `3`\n",
"2. Another version of the model is loaded into memory at `4`\n",
"\n",
"If a 6 *billion* parameter model is being loaded, each model class has a dictionary of 24GB so 48GB of vRAM is needed"
]
},
{
"cell_type": "markdown",
"id": "53651488-7303-4aa3-83bb-ea7331938a01",
"metadata": {},
"source": [
"## Empty Model Weights\n",
"\n",
"We can fix step 1 by loading in an empty model skeleton at first:\n",
"\n",
"```{.python code-line-numbers=\"1,3-4\"}\n",
"from accelerate import init_empty_weights\n",
"\n",
"with init_empty_weights():\n",
" my_model = ModelClass(...)\n",
"state_dict = torch.load(checkpoint_file)\n",
"my_model.load_state_dict(state_dict)\n",
"```\n",
"\n",
"::: {.callout-important appearance=\"default\"}\n",
"## This code will not run\n",
"It is likely that just calling `my_model(x)` will fail as not all tensor operations are supported on the `meta` device.\n",
":::"
]
},
{
"cell_type": "markdown",
"id": "94a2b99a-b154-4cc3-93fd-431ba78ecfdf",
"metadata": {},
"source": [
"## Sharded Checkpoints - The Concept\n",
"\n",
"The next step is to have \"Sharded Checkpoints\" saved for your model.\n",
"\n",
"Basically smaller chunks of your model weights stored that can be brought in at any particular time. \n",
"\n",
"This reduces the amount of memory step 2 takes in since we can just load in a \"chunk\" of the model at a time, then swap it out for a new chunk through PyTorch hooks"
]
},
{
"cell_type": "markdown",
"id": "11a55882-8bab-4d6b-b8ca-bfc886351156",
"metadata": {},
"source": [
"## Sharded Checkpoints - The Code\n",
"\n",
"```{.python code-line-numbers=\"1,6-8\"}\n",
"from accelerate import init_empty_weights, load_checkpoint_and_dispatch\n",
"\n",
"with init_empty_weights():\n",
" my_model = ModelClass(...)\n",
"\n",
"my_model = load_checkpoint_and_dispatch(\n",
" my_model, \"sharded-weights\", device_map=\"auto\"\n",
")\n",
"```\n",
"`device_map=\"auto\"` will tell π€ Accelerate that it should determine where to put each layer of the model:\n",
"\n",
"1. Maximum space on the GPU(s)\n",
"2. Maximum space on the CPU(s)\n",
"3. Utilize disk space through memory-mapped tensors"
]
},
{
"cell_type": "markdown",
"id": "6796c0ac-77e4-4f88-b01a-25f428b29a87",
"metadata": {},
"source": [
"## Big Model Inference Put Together\n",
"\n",
"```{.python}\n",
"from accelerate import init_empty_weights, load_checkpoint_and_dispatch\n",
"\n",
"with init_empty_weights():\n",
" my_model = ModelClass(...)\n",
"\n",
"my_model = load_checkpoint_and_dispatch(\n",
" my_model, \"sharded-weights\", device_map=\"auto\"\n",
")\n",
"my_model.eval()\n",
"\n",
"for batch in dataloader:\n",
" output = my_model(batch)\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "083c7037-27a2-4347-b473-358feb3316b3",
"metadata": {},
"source": [
"## Is there an easier way?\n",
"\n",
"The `transformers` library combined with the Hub makes all this code wrapping much easier for you with the `pipeline`\n",
"\n",
"```python\n",
"import torch\n",
"from transformers import pipeline\n",
"pipe = pipeline(\n",
" task=\"text-generation\",\n",
" model=\"EleutherAI/gpt-j-6B\",\n",
" device_map=\"auto\",\n",
" torch_dtype=torch.float16\n",
")\n",
"\n",
"text = pipe(\"This is some generated text, I think\")\n",
"```"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "45b99a09-ba10-40b0-9b05-87360016da31",
"metadata": {},
"source": [
"# What about Stable Diffusion? \n",
"\n",
"A demo with `diffusers` & Weights and Biases"
]
},
{
"cell_type": "markdown",
"id": "52f29e81-2e55-42d0-8e9d-83e692714909",
"metadata": {},
"source": [
"## Some Handy Resources\n",
"\n",
"- [π€ Accelerate documentation](https://hf.co/docs/accelerate)\n",
"- [Launching distributed code](https://huggingface.co/docs/accelerate/basic_tutorials/launch)\n",
"- [Distributed code and Jupyter Notebooks](https://huggingface.co/docs/accelerate/basic_tutorials/notebook)\n",
"- [Migrating to π€ Accelerate easily](https://huggingface.co/docs/accelerate/basic_tutorials/migration)\n",
"- [Big Model Inference tutorial](https://huggingface.co/docs/accelerate/usage_guides/big_modeling)\n",
"- [DeepSpeed and π€ Accelerate](https://huggingface.co/docs/accelerate/usage_guides/deepspeed)\n",
"- [Fully Sharded Data Parallelism and π€ Accelerate](https://huggingface.co/docs/accelerate/usage_guides/fsdp)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b9f6a92d-1275-470b-aa27-ff2be450d616",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|