File size: 13,454 Bytes
3577d3c 487ee6d da48dbe 487ee6d c3d3e4a 487ee6d c3d3e4a 487ee6d da48dbe 3577d3c da48dbe 3577d3c c3d3e4a 487ee6d 3577d3c c3d3e4a 487ee6d c3d3e4a 487ee6d c3d3e4a da48dbe fb140f6 da48dbe 3577d3c 487ee6d f4e5ac5 3577d3c fb140f6 3577d3c 487ee6d f4e5ac5 c3d3e4a 3577d3c c3d3e4a 3577d3c c3d3e4a f4e5ac5 c3d3e4a fb140f6 c3d3e4a 3577d3c f4e5ac5 3577d3c fb140f6 f4e5ac5 fb140f6 3577d3c c3d3e4a 3577d3c c3d3e4a 3577d3c c3d3e4a 3577d3c fb140f6 c3d3e4a 3577d3c c3d3e4a 3577d3c c3d3e4a 3577d3c c3d3e4a fb140f6 c3d3e4a 3577d3c c3d3e4a 3577d3c c3d3e4a 3577d3c 487ee6d c3d3e4a 3577d3c 487ee6d c3d3e4a 3577d3c c3d3e4a 487ee6d 3577d3c c3d3e4a 3577d3c 8cf0096 3577d3c fb140f6 8cf0096 3577d3c 8cf0096 c3d3e4a f4e5ac5 3577d3c 487ee6d 3577d3c 487ee6d 3577d3c f4e5ac5 487ee6d f4e5ac5 487ee6d f4e5ac5 487ee6d f4e5ac5 3577d3c c3d3e4a 3577d3c c3d3e4a fb140f6 da48dbe 487ee6d f4e5ac5 487ee6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import argparse
import os
import os.path as osp
import numpy as np
import torch
import trimesh
from pytorch3d.ops import SubdivideMeshes
from pytorch3d.structures import Meshes
from scipy.spatial import cKDTree
import lib.smplx as smplx
from lib.common.local_affine import register
from lib.dataset.mesh_util import (
SMPLX,
export_obj,
keep_largest,
o3d_ransac,
poisson,
remesh_laplacian,
)
from lib.smplx.lbs import general_lbs
# loading cfg file
parser = argparse.ArgumentParser()
parser.add_argument("-n", "--name", type=str, default="")
parser.add_argument("-g", "--gpu", type=int, default=0)
args = parser.parse_args()
smplx_container = SMPLX()
device = torch.device(f"cuda:{args.gpu}")
# loading SMPL-X and econ objs inferred with ECON
prefix = f"./results/econ/obj/{args.name}"
smpl_path = f"{prefix}_smpl_00.npy"
smplx_param = np.load(smpl_path, allow_pickle=True).item()
# export econ obj with pre-computed normals
econ_path = f"{prefix}_0_full.obj"
econ_obj = trimesh.load(econ_path)
assert (econ_obj.vertex_normals.shape[1] == 3)
econ_obj.export(f"{prefix}_econ_raw.ply")
# align econ with SMPL-X
econ_obj.vertices *= np.array([1.0, -1.0, -1.0])
econ_obj.vertices /= smplx_param["scale"].cpu().numpy()
econ_obj.vertices -= smplx_param["transl"].cpu().numpy()
for key in smplx_param.keys():
smplx_param[key] = smplx_param[key].cpu().view(1, -1)
smpl_model = smplx.create(
smplx_container.model_dir,
model_type="smplx",
gender="neutral",
age="adult",
use_face_contour=False,
use_pca=False,
num_betas=200,
num_expression_coeffs=50,
ext='pkl'
)
smpl_out_lst = []
# obtain the pose params of T-pose, DA-pose, and the original pose
for pose_type in ["a-pose", "t-pose", "da-pose", "pose"]:
smpl_out_lst.append(
smpl_model(
body_pose=smplx_param["body_pose"],
global_orient=smplx_param["global_orient"],
betas=smplx_param["betas"],
expression=smplx_param["expression"],
jaw_pose=smplx_param["jaw_pose"],
left_hand_pose=smplx_param["left_hand_pose"],
right_hand_pose=smplx_param["right_hand_pose"],
return_verts=True,
return_full_pose=True,
return_joint_transformation=True,
return_vertex_transformation=True,
pose_type=pose_type
)
)
# -------------------------- align econ and SMPL-X in DA-pose space ------------------------- #
# 1. find the vertex-correspondence between SMPL-X and econ
# 2. ECON + SMPL-X: posed space --> T-pose space --> DA-pose space
# 3. ECON (w/o hands & over-streched faces) + SMPL-X (w/ hands & registered inpainting parts)
# ------------------------------------------------------------------------------------------- #
smpl_verts = smpl_out_lst[3].vertices.detach()[0]
smpl_tree = cKDTree(smpl_verts.cpu().numpy())
dist, idx = smpl_tree.query(econ_obj.vertices, k=5)
if not osp.exists(f"{prefix}_econ_da.obj") or not osp.exists(f"{prefix}_smpl_da.obj"):
# t-pose for ECON
econ_verts = torch.tensor(econ_obj.vertices).float()
rot_mat_t = smpl_out_lst[3].vertex_transformation.detach()[0][idx[:, 0]]
homo_coord = torch.ones_like(econ_verts)[..., :1]
econ_cano_verts = torch.inverse(rot_mat_t) @ torch.cat([econ_verts, homo_coord],
dim=1).unsqueeze(-1)
econ_cano_verts = econ_cano_verts[:, :3, 0].cpu()
econ_cano = trimesh.Trimesh(econ_cano_verts, econ_obj.faces)
# da-pose for ECON
rot_mat_da = smpl_out_lst[2].vertex_transformation.detach()[0][idx[:, 0]]
econ_da_verts = rot_mat_da @ torch.cat([econ_cano_verts, homo_coord], dim=1).unsqueeze(-1)
econ_da = trimesh.Trimesh(econ_da_verts[:, :3, 0].cpu(), econ_obj.faces)
# da-pose for SMPL-X
smpl_da = trimesh.Trimesh(
smpl_out_lst[2].vertices.detach()[0], smpl_model.faces, maintain_orders=True, process=False
)
smpl_da.export(f"{prefix}_smpl_da.obj")
# remove hands from ECON for next registeration
econ_da_body = econ_da.copy()
mano_mask = ~np.isin(idx[:, 0], smplx_container.smplx_mano_vid)
econ_da_body.update_faces(mano_mask[econ_da.faces].all(axis=1))
econ_da_body.remove_unreferenced_vertices()
econ_da_body = keep_largest(econ_da_body)
# remove SMPL-X hand and face
register_mask = ~np.isin(
np.arange(smpl_da.vertices.shape[0]),
np.concatenate([smplx_container.smplx_mano_vid, smplx_container.smplx_front_flame_vid])
)
register_mask *= ~smplx_container.eyeball_vertex_mask.bool().numpy()
smpl_da_body = smpl_da.copy()
smpl_da_body.update_faces(register_mask[smpl_da.faces].all(axis=1))
smpl_da_body.remove_unreferenced_vertices()
smpl_da_body = keep_largest(smpl_da_body)
# upsample the smpl_da_body and do registeration
smpl_da_body = Meshes(
verts=[torch.tensor(smpl_da_body.vertices).float()],
faces=[torch.tensor(smpl_da_body.faces).long()],
).to(device)
sm = SubdivideMeshes(smpl_da_body)
smpl_da_body = register(econ_da_body, sm(smpl_da_body), device)
# remove over-streched+hand faces from ECON
econ_da_body = econ_da.copy()
edge_before = np.sqrt(
((econ_obj.vertices[econ_cano.edges[:, 0]] -
econ_obj.vertices[econ_cano.edges[:, 1]])**2).sum(axis=1)
)
edge_after = np.sqrt(
((econ_da.vertices[econ_cano.edges[:, 0]] -
econ_da.vertices[econ_cano.edges[:, 1]])**2).sum(axis=1)
)
edge_diff = edge_after / edge_before.clip(1e-2)
streched_mask = np.unique(econ_cano.edges[edge_diff > 6])
mano_mask = ~np.isin(idx[:, 0], smplx_container.smplx_mano_vid)
mano_mask[streched_mask] = False
econ_da_body.update_faces(mano_mask[econ_cano.faces].all(axis=1))
econ_da_body.remove_unreferenced_vertices()
# stitch the registered SMPL-X body and floating hands to ECON
econ_da_tree = cKDTree(econ_da.vertices)
dist, idx = econ_da_tree.query(smpl_da_body.vertices, k=1)
smpl_da_body.update_faces((dist > 0.02)[smpl_da_body.faces].all(axis=1))
smpl_da_body.remove_unreferenced_vertices()
smpl_hand = smpl_da.copy()
smpl_hand.update_faces(
smplx_container.smplx_mano_vertex_mask.numpy()[smpl_hand.faces].all(axis=1)
)
smpl_hand.remove_unreferenced_vertices()
econ_da = sum([smpl_hand, smpl_da_body, econ_da_body])
econ_da = poisson(econ_da, f"{prefix}_econ_da.obj", depth=10, face_count=50000)
econ_da = remesh_laplacian(econ_da, f"{prefix}_econ_da.obj")
else:
econ_da = trimesh.load(f"{prefix}_econ_da.obj")
smpl_da = trimesh.load(f"{prefix}_smpl_da.obj", maintain_orders=True, process=False)
# ---------------------- SMPL-X compatible ECON ---------------------- #
# 1. Find the new vertex-correspondence between NEW ECON and SMPL-X
# 2. Build the new J_regressor, lbs_weights, posedirs
# 3. canonicalize the NEW ECON
# ------------------------------------------------------------------- #
print("Start building the SMPL-X compatible ECON model...")
smpl_tree = cKDTree(smpl_da.vertices)
dist, idx = smpl_tree.query(econ_da.vertices, k=5)
knn_weights = np.exp(-dist**2)
knn_weights /= knn_weights.sum(axis=1, keepdims=True)
econ_J_regressor = (smpl_model.J_regressor[:, idx] * knn_weights[None]).sum(dim=-1)
econ_lbs_weights = (smpl_model.lbs_weights.T[:, idx] * knn_weights[None]).sum(dim=-1).T
num_posedirs = smpl_model.posedirs.shape[0]
econ_posedirs = (
smpl_model.posedirs.view(num_posedirs, -1, 3)[:, idx, :] * knn_weights[None, ..., None]
).sum(dim=-2).view(num_posedirs, -1).float()
econ_J_regressor /= econ_J_regressor.sum(dim=1, keepdims=True).clip(min=1e-10)
econ_lbs_weights /= econ_lbs_weights.sum(dim=1, keepdims=True)
rot_mat_da = smpl_out_lst[2].vertex_transformation.detach()[0][idx[:, 0]]
econ_da_verts = torch.tensor(econ_da.vertices).float()
econ_cano_verts = torch.inverse(rot_mat_da) @ torch.cat([
econ_da_verts, torch.ones_like(econ_da_verts)[..., :1]
],
dim=1).unsqueeze(-1)
econ_cano_verts = econ_cano_verts[:, :3, 0].double()
# ----------------------------------------------------
# use original pose to animate ECON reconstruction
# ----------------------------------------------------
new_pose = smpl_out_lst[3].full_pose
# new_pose[:, :3] = 0.
posed_econ_verts, _ = general_lbs(
pose=new_pose,
v_template=econ_cano_verts.unsqueeze(0),
posedirs=econ_posedirs,
J_regressor=econ_J_regressor,
parents=smpl_model.parents,
lbs_weights=econ_lbs_weights
)
aligned_econ_verts = posed_econ_verts[0].detach().cpu().numpy()
aligned_econ_verts += smplx_param["transl"].cpu().numpy()
aligned_econ_verts *= smplx_param["scale"].cpu().numpy() * np.array([1.0, -1.0, -1.0])
econ_pose = trimesh.Trimesh(aligned_econ_verts, econ_da.faces)
assert (econ_pose.vertex_normals.shape[1] == 3)
econ_pose.export(f"{prefix}_econ_pose.ply")
# -------------------------------------------------------------------------
# Align posed ECON with original ECON, for pixel-aligned texture extraction
# -------------------------------------------------------------------------
print("Start ICP registration between posed & original ECON...")
import open3d as o3d
source = o3d.io.read_point_cloud(f"{prefix}_econ_pose.ply")
target = o3d.io.read_point_cloud(f"{prefix}_econ_raw.ply")
trans_init = o3d_ransac(source, target)
icp_criteria = o3d.pipelines.registration.ICPConvergenceCriteria(
relative_fitness=0.000001, relative_rmse=0.000001, max_iteration=100
)
reg_p2l = o3d.pipelines.registration.registration_icp(
source,
target,
0.1,
trans_init,
o3d.pipelines.registration.TransformationEstimationPointToPlane(),
criteria=icp_criteria
)
econ_pose.apply_transform(reg_p2l.transformation)
cache_path = f"{prefix.replace('obj','cache')}"
os.makedirs(cache_path, exist_ok=True)
# -----------------------------------------------------------------
# create UV texture (.obj .mtl .png) from posed ECON reconstruction
# -----------------------------------------------------------------
print("Start Color mapping...")
from PIL import Image
from torchvision import transforms
from lib.common.render import query_color
from lib.common.render_utils import Pytorch3dRasterizer
if not osp.exists(f"{prefix}_econ_icp_rgb.ply"):
masked_image = f"./results/econ/png/{args.name}_cloth.png"
tensor_image = transforms.ToTensor()(Image.open(masked_image))[:, :, :512]
final_colors = query_color(
torch.tensor(econ_pose.vertices).float(),
torch.tensor(econ_pose.faces).long(),
((tensor_image - 0.5) * 2.0).unsqueeze(0).to(device),
device=device,
paint_normal=False,
)
final_colors[final_colors == tensor_image[:, 0, 0] * 255.0] = 0.0
final_colors = final_colors.detach().cpu().numpy()
econ_pose.visual.vertex_colors = final_colors
econ_pose.export(f"{prefix}_econ_icp_rgb.ply")
else:
mesh = trimesh.load(f"{prefix}_econ_icp_rgb.ply")
final_colors = mesh.visual.vertex_colors[:, :3]
print("Start UV texture generation...")
# Generate UV coords
v_np = econ_pose.vertices
f_np = econ_pose.faces
vt_cache = osp.join(cache_path, "vt.pt")
ft_cache = osp.join(cache_path, "ft.pt")
if osp.exists(vt_cache) and osp.exists(ft_cache):
vt = torch.load(vt_cache).to(device)
ft = torch.load(ft_cache).to(device)
else:
import xatlas
atlas = xatlas.Atlas()
atlas.add_mesh(v_np, f_np)
chart_options = xatlas.ChartOptions()
chart_options.max_iterations = 4
atlas.generate(chart_options=chart_options)
vmapping, ft_np, vt_np = atlas[0]
vt = torch.from_numpy(vt_np.astype(np.float32)).float().to(device)
ft = torch.from_numpy(ft_np.astype(np.int64)).int().to(device)
torch.save(vt.cpu(), vt_cache)
torch.save(ft.cpu(), ft_cache)
# UV texture rendering
uv_rasterizer = Pytorch3dRasterizer(image_size=512, device=device)
texture_npy = uv_rasterizer.get_texture(
torch.cat([(vt - 0.5) * 2.0, torch.ones_like(vt[:, :1])], dim=1),
ft,
torch.tensor(v_np).unsqueeze(0).float(),
torch.tensor(f_np).unsqueeze(0).long(),
torch.tensor(final_colors).unsqueeze(0).float() / 255.0,
)
gray_texture = texture_npy.copy()
gray_texture[texture_npy.sum(axis=2) == 0.0] = 0.5
Image.fromarray((gray_texture * 255.0).astype(np.uint8)).save(f"{cache_path}/texture.png")
# UV mask for TEXTure (https://readpaper.com/paper/4720151447010820097)
white_texture = texture_npy.copy()
white_texture[texture_npy.sum(axis=2) == 0.0] = 1.0
Image.fromarray((white_texture * 255.0).astype(np.uint8)).save(f"{cache_path}/mask.png")
# generate a-pose vertices
new_pose = smpl_out_lst[0].full_pose
new_pose[:, :3] = 0.
posed_econ_verts, _ = general_lbs(
pose=new_pose,
v_template=econ_cano_verts.unsqueeze(0),
posedirs=econ_posedirs,
J_regressor=econ_J_regressor,
parents=smpl_model.parents,
lbs_weights=econ_lbs_weights
)
# export mtl file
with open(f"{cache_path}/material.mtl", 'w') as fp:
fp.write(f'newmtl mat0 \n')
fp.write(f'Ka 1.000000 1.000000 1.000000 \n')
fp.write(f'Kd 1.000000 1.000000 1.000000 \n')
fp.write(f'Ks 0.000000 0.000000 0.000000 \n')
fp.write(f'Tr 1.000000 \n')
fp.write(f'illum 1 \n')
fp.write(f'Ns 0.000000 \n')
fp.write(f'map_Kd texture.png \n')
export_obj(posed_econ_verts[0].detach().cpu().numpy(), f_np, vt, ft, f"{cache_path}/mesh.obj")
|