Spaces:
Running
Running
File size: 1,133 Bytes
8d2001a 8ce7fdb 8d2001a 8ce7fdb 8d2001a 8ce7fdb 86f6646 95eab87 6fc3067 95eab87 6fc3067 d773a0f 8d2001a 68a5c33 8d2001a c7f0cc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import gradio as gr
from scenedetect import open_video, SceneManager, split_video_ffmpeg
from scenedetect.detectors import ContentDetector
from scenedetect.video_splitter import split_video_ffmpeg
def find_scenes(video_path, threshold=27.0):
# Open our video, create a scene manager, and add a detector.
video = open_video(video_path)
scene_manager = SceneManager()
scene_manager.add_detector(
ContentDetector(threshold=threshold))
scene_manager.detect_scenes(video, show_progress=True)
scene_list = scene_manager.get_scene_list()
#print(scene_list)
#shot_in = scene_list[0][0].get_frames()
#shot_out = scene_list[0][1].get_frames()
#print(shot_in, shot_out)
for i, scene in enumerate(scene_list):
print('Scene %2d: Start %s / Frame %d, End %s / Frame %d' % (
i+1,
scene[0].get_timecode(), scene[0].get_frames(),
scene[1].get_timecode(), scene[1].get_frames(),))
return scene_list
video_input=gr.Video(source="upload", format="mp4", mirror_webcam="False");
gr.Interface(fn=find_scenes, inputs=video_input, outputs="json").launch() |