File size: 4,526 Bytes
282d804
 
 
 
b6d3c53
282d804
 
 
 
 
 
 
 
b6d3c53
282d804
 
 
 
 
 
 
 
 
 
 
 
 
 
b6d3c53
282d804
 
 
 
 
 
b6d3c53
282d804
b6d3c53
 
 
 
 
 
 
 
 
 
 
 
 
 
282d804
b6d3c53
 
 
 
 
 
 
 
 
 
 
 
 
 
282d804
 
 
 
 
 
b6d3c53
 
 
 
 
282d804
b6d3c53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282d804
 
 
 
b6d3c53
282d804
 
 
b6d3c53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282d804
 
 
b6d3c53
282d804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import hopsworks\n",
    "from dotenv import load_dotenv\n",
    "import os\n",
    "\n",
    "load_dotenv()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Connected. Call `.close()` to terminate connection gracefully.\n",
      "\n",
      "Sample data from the feature view:\n",
      "<class 'tuple'>\n",
      "(                         date     open  sentiment\n",
      "0    2023-06-26T00:00:00.000Z  250.065   0.119444\n",
      "1    2023-07-25T00:00:00.000Z  272.380   0.119444\n",
      "2    2023-01-10T00:00:00.000Z  121.070   0.102207\n",
      "3    2023-05-11T00:00:00.000Z  168.700   0.141296\n",
      "4    2023-08-01T00:00:00.000Z  266.260   0.011111\n",
      "..                        ...      ...        ...\n",
      "464  2022-12-22T00:00:00.000Z  136.000   0.102207\n",
      "465  2023-08-23T00:00:00.000Z  229.340   0.024046\n",
      "466  2022-09-08T00:00:00.000Z  281.300   0.087306\n",
      "467  2023-07-06T00:00:00.000Z  278.090   0.119444\n",
      "468  2023-10-27T00:00:00.000Z  210.600   0.164868\n",
      "\n",
      "[469 rows x 3 columns],     ticker\n",
      "0     TSLA\n",
      "1     TSLA\n",
      "2     TSLA\n",
      "3     TSLA\n",
      "4     TSLA\n",
      "..     ...\n",
      "464   TSLA\n",
      "465   TSLA\n",
      "466   TSLA\n",
      "467   TSLA\n",
      "468   TSLA\n",
      "\n",
      "[469 rows x 1 columns])\n"
     ]
    }
   ],
   "source": [
    "import hsfs\n",
    "\n",
    "# Connection setup\n",
    "# Connect to Hopsworks\n",
    "api_key = os.getenv('hopsworks_api')\n",
    "connection = hsfs.connection()\n",
    "fs = connection.get_feature_store()\n",
    "\n",
    "# Get feature view\n",
    "feature_view = fs.get_feature_view(\n",
    "    name='tesla_stocks_fv',\n",
    "    version=1\n",
    ")\n",
    "td_version, td_job = feature_view.create_train_test_split(\n",
    "    description = 'tesla and news sentiment training dataset',\n",
    "    data_format = \"csv\",\n",
    "    test_size = 0.2,\n",
    "    coalesce = True,\n",
    "    statistics_config={\n",
    "        \"enabled\": True,\n",
    "        \"histograms\": False,\n",
    "        \"correlations\": False\n",
    "    }    \n",
    ")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(                         date     open  sentiment\n",
       " 0    2023-06-26T00:00:00.000Z  250.065   0.119444\n",
       " 1    2023-07-25T00:00:00.000Z  272.380   0.119444\n",
       " 2    2023-01-10T00:00:00.000Z  121.070   0.102207\n",
       " 3    2023-05-11T00:00:00.000Z  168.700   0.141296\n",
       " 4    2023-08-01T00:00:00.000Z  266.260   0.011111\n",
       " ..                        ...      ...        ...\n",
       " 464  2022-12-22T00:00:00.000Z  136.000   0.102207\n",
       " 465  2023-08-23T00:00:00.000Z  229.340   0.024046\n",
       " 466  2022-09-08T00:00:00.000Z  281.300   0.087306\n",
       " 467  2023-07-06T00:00:00.000Z  278.090   0.119444\n",
       " 468  2023-10-27T00:00:00.000Z  210.600   0.164868\n",
       " \n",
       " [469 rows x 3 columns],\n",
       "     ticker\n",
       " 0     TSLA\n",
       " 1     TSLA\n",
       " 2     TSLA\n",
       " 3     TSLA\n",
       " 4     TSLA\n",
       " ..     ...\n",
       " 464   TSLA\n",
       " 465   TSLA\n",
       " 466   TSLA\n",
       " 467   TSLA\n",
       " 468   TSLA\n",
       " \n",
       " [469 rows x 1 columns])"
      ]
     },
     "execution_count": 22,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sample_data"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.4"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}