File size: 19,919 Bytes
b4966ee
 
78db81b
 
 
003d24d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ffdc42
 
 
 
 
 
 
 
 
 
78db81b
 
 
 
 
 
003d24d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bd4020
 
 
 
003d24d
78db81b
0d4db15
78db81b
 
0d4db15
 
 
 
003d24d
 
 
 
 
3ffdc42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbfa15a
 
 
 
 
 
 
 
 
3ffdc42
 
003d24d
3ffdc42
003d24d
3ffdc42
 
 
 
 
 
 
003d24d
dbfa15a
0d4db15
3ffdc42
78db81b
3ffdc42
b4966ee
 
3ffdc42
003d24d
dbfa15a
 
 
 
 
 
 
b4966ee
003d24d
 
dbfa15a
 
 
 
 
 
003d24d
 
 
3ffdc42
003d24d
 
 
3ffdc42
 
 
 
 
dbfa15a
 
 
 
 
 
3ffdc42
 
 
 
 
 
 
 
 
 
 
 
 
0d4db15
 
 
dbfa15a
 
 
 
 
 
0d4db15
 
003d24d
3ffdc42
0d4db15
 
 
3ffdc42
0d4db15
 
3ffdc42
003d24d
 
 
 
 
 
 
0d4db15
 
dbfa15a
 
 
 
 
 
0d4db15
 
3ffdc42
0d4db15
 
 
 
 
003d24d
 
3ffdc42
003d24d
 
0d4db15
b4966ee
dbfa15a
 
 
 
 
 
0d4db15
 
3ffdc42
 
0d4db15
3ffdc42
0d4db15
b4966ee
 
0d4db15
003d24d
 
3ffdc42
003d24d
 
3ffdc42
 
dbfa15a
 
 
 
 
 
3ffdc42
 
 
 
 
 
 
 
 
dbfa15a
3ffdc42
 
 
 
 
0d4db15
bc83dc3
dbfa15a
 
 
 
 
 
0d4db15
 
3ffdc42
 
0d4db15
 
 
 
 
003d24d
3ffdc42
003d24d
0d4db15
 
dbfa15a
035c9c8
dbfa15a
 
 
 
78db81b
0d4db15
3ffdc42
 
0d4db15
3ffdc42
0d4db15
bc83dc3
 
0d4db15
 
003d24d
3ffdc42
003d24d
0d4db15
 
 
dbfa15a
 
 
 
 
 
0d4db15
 
3ffdc42
 
0d4db15
3ffdc42
0d4db15
 
 
 
 
003d24d
 
3ffdc42
003d24d
 
0d4db15
 
dbfa15a
 
 
 
 
 
0d4db15
 
3ffdc42
0d4db15
 
 
 
 
3ffdc42
0d4db15
 
dbfa15a
 
 
 
 
 
0d4db15
 
3ffdc42
 
0d4db15
3ffdc42
0d4db15
 
 
 
003d24d
 
3ffdc42
003d24d
 
dbfa15a
 
3ffdc42
 
 
 
 
 
1bd4020
3ffdc42
 
b4966ee
 
3ffdc42
 
 
 
 
 
 
 
 
 
1bd4020
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load

TASKS = [
    "BitextMining",
    "Classification",
    "Clustering",
    "PairClassification",
    "Reranking",
    "Retrieval",
    "STS",
    "Summarization",
]

TASK_LIST_CLASSIFICATION = [
    "AmazonCounterfactualClassification (en)",
    "AmazonPolarityClassification",
    "AmazonReviewsClassification (en)",
    "Banking77Classification",
    "EmotionClassification",
    "ImdbClassification",
    "MassiveIntentClassification (en)",
    "MassiveScenarioClassification (en)",
    "MTOPDomainClassification (en)",
    "MTOPIntentClassification (en)",
    "ToxicConversationsClassification",
    "TweetSentimentExtractionClassification",
]

TASK_LIST_CLUSTERING = [
    "ArxivClusteringP2P",
    "ArxivClusteringS2S",
    "BiorxivClusteringP2P",
    "BiorxivClusteringS2S",
    "MedrxivClusteringP2P",
    "MedrxivClusteringS2S",
    "RedditClustering",
    "RedditClusteringP2P",
    "StackExchangeClustering",
    "StackExchangeClusteringP2P",
    "TwentyNewsgroupsClustering",
]

TASK_LIST_PAIR_CLASSIFICATION = [
    "SprintDuplicateQuestions",
    "TwitterSemEval2015",
    "TwitterURLCorpus",
]

TASK_LIST_RERANKING = [
    "AskUbuntuDupQuestions",
    "MindSmallReranking",
    "SciDocsRR",
    "StackOverflowDupQuestions",
]

TASK_LIST_RETRIEVAL = [
    "ArguAna",
    "ClimateFEVER",
    "CQADupstackRetrieval",
    "DBPedia",
    "FEVER",
    "FiQA2018",
    "HotpotQA",
    "MSMARCO",
    "NFCorpus",
    "NQ",
    "QuoraRetrieval",
    "SCIDOCS",
    "SciFact",
    "Touche2020",
    "TRECCOVID",
]

TASK_LIST_STS = [
    "BIOSSES",
    "SICK-R",
    "STS12",
    "STS13",
    "STS14",
    "STS15",
    "STS16",
    "STS17 (en-en)",
    "STS22 (en)",
    "STSBenchmark",
]


TASK_LIST_SUMMARIZATION = [
    "SummEval",
]

TASK_LIST_EN = TASK_LIST_CLASSIFICATION + TASK_LIST_CLUSTERING + TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_RERANKING + TASK_LIST_RETRIEVAL + TASK_LIST_STS + TASK_LIST_SUMMARIZATION

TASK_TO_METRIC = {
    "BitextMining": "f1",
    "Clustering": "v_measure",
    "Classification": "accuracy",
    "PairClassification": "cos_sim_ap",
    "Reranking": "map",
    "Retrieval": "ndcg_at_10",
    "STS": "cos_sim_spearman",
    "Summarization": "cos_sim_spearman",
}

def make_clickable_model(model_name):
    # Remove user from model name
    model_name_show = " ".join(model_name.split("/")[1:])
    link = "https://huggingface.co/" + model_name
    return (
        f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name_show}</a>'
    )


def get_mteb_data(tasks=["Clustering"], langs=[], cast_to_str=True, task_to_metric=TASK_TO_METRIC):
    api = HfApi()
    models = api.list_models(filter="mteb")
    df_list = []
    for model in models:
        readme_path = hf_hub_download(model.modelId, filename="README.md")
        meta = metadata_load(readme_path)
        # meta['model-index'][0]["results"] is list of elements like:
        # {
        #    "task": {"type": "Classification"},
        #    "dataset": {
        #        "type": "mteb/amazon_massive_intent",
        #        "name": "MTEB MassiveIntentClassification (nb)",
        #        "config": "nb",
        #        "split": "test",
        #    },
        #    "metrics": [
        #        {"type": "accuracy", "value": 39.81506388702084},
        #        {"type": "f1", "value": 38.809586587791664},
        #    ],
        # },
        # Use "get" instead of dict indexing to skip incompat metadata instead of erroring out
        if langs:
            task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and (sub_res.get("dataset", {}).get("config", "default") in ("default", *langs))]
        else:
            task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks)]
        out = [{res["dataset"]["name"].replace("MTEB ", ""): [round(score["value"], 2) for score in res["metrics"] if score["type"] == task_to_metric.get(res["task"]["type"])][0]} for res in task_results]
        out = {k: v for d in out for k, v in d.items()}
        out["Model"] = make_clickable_model(model.modelId)
        df_list.append(out)
    df = pd.DataFrame(df_list)
    # Put 'Model' column first
    cols = sorted(list(df.columns))
    cols.insert(0, cols.pop(cols.index("Model")))
    df = df[cols]
    df.fillna("", inplace=True)
    if cast_to_str:
        return df.astype(str) # Cast to str as Gradio does not accept floats
    return df

def get_mteb_average(get_all_avgs=False):
    global DATA_OVERALL, DATA_CLASSIFICATION_EN, DATA_CLUSTERING, DATA_PAIR_CLASSIFICATION, DATA_RERANKING, DATA_RETRIEVAL, DATA_STS_EN, DATA_SUMMARIZATION
    DATA_OVERALL = get_mteb_data(
        tasks=[
            "Classification",
            "Clustering",
            "PairClassification",
            "Reranking",
            "Retrieval",
            "STS",
            "Summarization",
        ],
        langs=["en", "en-en"],
        cast_to_str=False
    )
    
    DATA_OVERALL.insert(1, f"Average ({len(TASK_LIST_EN)} datasets)", DATA_OVERALL[TASK_LIST_EN].mean(axis=1, skipna=False))
    DATA_OVERALL.insert(2, f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", DATA_OVERALL[TASK_LIST_CLASSIFICATION].mean(axis=1, skipna=False))
    DATA_OVERALL.insert(3, f"Clustering Average ({len(TASK_LIST_CLUSTERING)} datasets)", DATA_OVERALL[TASK_LIST_CLUSTERING].mean(axis=1, skipna=False))
    DATA_OVERALL.insert(4, f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION)} datasets)", DATA_OVERALL[TASK_LIST_PAIR_CLASSIFICATION].mean(axis=1, skipna=False))
    DATA_OVERALL.insert(5, f"Reranking Average ({len(TASK_LIST_RERANKING)} datasets)", DATA_OVERALL[TASK_LIST_RERANKING].mean(axis=1, skipna=False))
    DATA_OVERALL.insert(6, f"Retrieval Average ({len(TASK_LIST_RETRIEVAL)} datasets)", DATA_OVERALL[TASK_LIST_RETRIEVAL].mean(axis=1, skipna=False))
    DATA_OVERALL.insert(7, f"STS Average ({len(TASK_LIST_STS)} datasets)", DATA_OVERALL[TASK_LIST_STS].mean(axis=1, skipna=False))
    DATA_OVERALL.insert(8, f"Summarization Average ({len(TASK_LIST_SUMMARIZATION)} dataset)", DATA_OVERALL[TASK_LIST_SUMMARIZATION].mean(axis=1, skipna=False))
    DATA_OVERALL.sort_values(f"Average ({len(TASK_LIST_EN)} datasets)", ascending=False, inplace=True)
    # Start ranking from 1
    DATA_OVERALL.insert(0, "Rank", list(range(1, len(DATA_OVERALL) + 1)))

    DATA_OVERALL = DATA_OVERALL.round(2).astype(str)

    DATA_CLASSIFICATION_EN = DATA_OVERALL[["Model"] + TASK_LIST_CLASSIFICATION]
    DATA_CLUSTERING = DATA_OVERALL[["Model"] + TASK_LIST_CLUSTERING]
    DATA_PAIR_CLASSIFICATION = DATA_OVERALL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION]
    DATA_RERANKING = DATA_OVERALL[["Model"] + TASK_LIST_RERANKING]
    DATA_RETRIEVAL = DATA_OVERALL[["Model"] + TASK_LIST_RETRIEVAL]
    DATA_STS_EN = DATA_OVERALL[["Model"] + TASK_LIST_STS]
    DATA_SUMMARIZATION = DATA_OVERALL[["Model"] + TASK_LIST_SUMMARIZATION]

    DATA_OVERALL = DATA_OVERALL[["Rank", "Model", f"Average ({len(TASK_LIST_EN)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL)} datasets)", f"STS Average ({len(TASK_LIST_STS)} datasets)", f"Summarization Average ({len(TASK_LIST_SUMMARIZATION)} dataset)"]]

    return DATA_OVERALL

get_mteb_average()
block = gr.Blocks()


with block:
    gr.Markdown(f"""
    Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the <a href="https://github.com/embeddings-benchmark/mteb#leaderboard" target="_blank" style="text-decoration: underline">MTEB GitHub repository</a> ๐Ÿค—

    - **Total Scores**: TODO
    - **Total Models**: {len(DATA_OVERALL)}
    - **Total Users**: TODO
    """)
    with gr.Tabs():
        with gr.TabItem("Overall"):
            with gr.Row():
                gr.Markdown("""
                **Overall MTEB English leaderboard ๐Ÿ”ฎ**
                
                - **Metric:** Various, refer to task tabs
                - **Languages:** English, refer to task tabs for others
                """)
            with gr.Row():
                data_overall = gr.components.Dataframe(
                    DATA_OVERALL,
                    datatype=["markdown"] * len(DATA_OVERALL.columns) * 2,
                    type="pandas",
                    wrap=True,
                )
            with gr.Row():
                data_run = gr.Button("Refresh")
                data_run.click(get_mteb_average, inputs=None, outputs=data_overall)                
        with gr.TabItem("BitextMining"):
            with gr.Row():
                    gr.Markdown("""
                    **Bitext Mining Leaderboard ๐ŸŽŒ**
                    
                    - **Metric:** Accuracy (accuracy)
                    - **Languages:** 117
                    """)
            with gr.Row():
                data_bitext_mining = gr.components.Dataframe(
                    datatype=["markdown"] * 500, # hack when we don't know how many columns
                    type="pandas",
                )
            with gr.Row():
                data_run = gr.Button("Refresh")
                task_bitext_mining = gr.Variable(value="BitextMining")
                data_run.click(
                    get_mteb_data,
                    inputs=[task_bitext_mining],
                    outputs=data_bitext_mining,
                )
        with gr.TabItem("Classification"):
            with gr.TabItem("English"):
                with gr.Row():
                    gr.Markdown("""
                    **Classification Leaderboard โค๏ธ**
                    
                    - **Metric:** Accuracy (accuracy)
                    - **Languages:** English
                    """)
                with gr.Row():
                    data_classification_en = gr.components.Dataframe(
                        DATA_CLASSIFICATION_EN,
                        datatype=["markdown"] * len(DATA_CLASSIFICATION_EN.columns) * 20,
                        type="pandas",
                    )
                with gr.Row():
                    data_run_classification_en = gr.Button("Refresh")
                    task_classification_en = gr.Variable(value="Classification")
                    lang_classification_en = gr.Variable(value=["en"])
                    data_run_classification_en.click(
                        get_mteb_data,
                        inputs=[
                            task_classification_en,
                            lang_classification_en,
                        ],
                        outputs=data_classification_en,
                    )
            with gr.TabItem("Multilingual"):
                with gr.Row():
                    gr.Markdown("""
                    **Classification Multilingual Leaderboard ๐Ÿ’œ๐Ÿ’š๐Ÿ’™**
                    
                    - **Metric:** Accuracy (accuracy)
                    - **Languages:** 51
                    """)
                with gr.Row():
                    data_classification = gr.components.Dataframe(
                        datatype=["markdown"] * 500, # hack when we don't know how many columns
                        type="pandas",
                    )
                with gr.Row():
                    data_run = gr.Button("Refresh")
                    task_classification = gr.Variable(value="Classification")
                    data_run.click(
                        get_mteb_data,
                        inputs=[task_classification],
                        outputs=data_classification,
                    )
        with gr.TabItem("Clustering"):
            with gr.Row():
                gr.Markdown("""
                **Clustering Leaderboard โœจ**
                
                - **Metric:** Validity Measure (v_measure)
                - **Languages:** English
                """)
            with gr.Row():
                data_clustering = gr.components.Dataframe(
                    DATA_CLUSTERING,
                    datatype="markdown",
                    type="pandas",
                    col_count=(len(DATA_CLUSTERING.columns), "fixed"),
                )
            with gr.Row():
                data_run = gr.Button("Refresh")
                task_clustering = gr.Variable(value="Clustering")
                data_run.click(
                    get_mteb_data,
                    inputs=[task_clustering],
                    outputs=data_clustering,
                )
        with gr.TabItem("Pair Classification"):
            with gr.Row():
                gr.Markdown("""
                **Pair Classification Leaderboard ๐ŸŽญ**
                
                - **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
                - **Languages:** English
                """)
            with gr.Row():
                data_pair_classification = gr.components.Dataframe(
                    DATA_PAIR_CLASSIFICATION,
                    datatype="markdown",
                    type="pandas",
                    col_count=(len(DATA_PAIR_CLASSIFICATION.columns), "fixed"),
                )
            with gr.Row():
                data_run = gr.Button("Refresh")
                task_pair_classification = gr.Variable(value="PairClassification")
                data_run.click(
                    get_mteb_data,
                    inputs=[task_pair_classification],
                    outputs=data_pair_classification,
                )
        with gr.TabItem("Retrieval"):
            with gr.Row():
                gr.Markdown("""
                **Retrieval Leaderboard  ๐Ÿ”Ž**
                
                - **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
                - **Languages:** English
                """)
            with gr.Row():
                data_retrieval = gr.components.Dataframe(
                    DATA_RETRIEVAL,
                    datatype=["markdown"] * len(DATA_RETRIEVAL.columns) * 2,
                    type="pandas",
                )
            with gr.Row():
                data_run = gr.Button("Refresh")
                task_retrieval = gr.Variable(value="Retrieval")
                data_run.click(
                    get_mteb_data, inputs=[task_retrieval], outputs=data_retrieval
                )
        with gr.TabItem("Reranking"):
            with gr.Row():
                gr.Markdown("""
                **Reranking Leaderboard ๐Ÿฅˆ**
                
                - **Metric:** Mean Average Precision (MAP)
                - **Languages:** English
                """)
            with gr.Row():
                data_reranking = gr.components.Dataframe(
                    DATA_RERANKING,
                    datatype="markdown",
                    type="pandas",
                    col_count=(len(DATA_RERANKING.columns), "fixed"),
                )
            with gr.Row():
                data_run = gr.Button("Refresh")
                task_reranking = gr.Variable(value="Reranking")
                metric_reranking = gr.Variable(value="map")
                data_run.click(
                    get_mteb_data, inputs=[task_reranking], outputs=data_reranking
                )
        with gr.TabItem("STS"):
            with gr.TabItem("English"):
                with gr.Row():
                    gr.Markdown("""
                    **STS Leaderboard ๐Ÿค–**
                    
                    - **Metric:** Spearman correlation based on cosine similarity
                    - **Languages:** English
                    """)
                with gr.Row():
                    data_sts_en = gr.components.Dataframe(
                        DATA_STS_EN,
                        datatype="markdown",
                        type="pandas",
                        col_count=(len(DATA_STS_EN.columns), "fixed"),
                    )
                with gr.Row():
                    data_run_en = gr.Button("Refresh")
                    task_sts_en = gr.Variable(value="STS")
                    lang_sts_en = gr.Variable(value=["en", "en-en"])
                    data_run.click(
                        get_mteb_data,
                        inputs=[task_sts_en, lang_sts_en],
                        outputs=data_sts_en,
                    )
            with gr.TabItem("Multilingual"):
                with gr.Row():
                    gr.Markdown("""
                    **STS Multilingual Leaderboard ๐Ÿ‘ฝ**
                    
                    - **Metric:** Spearman correlation based on cosine similarity
                    - **Languages:** Arabic, Chinese, Dutch, English, French, German, Italian, Korean, Polish, Russian, Spanish
                    """)
                with gr.Row():
                    data_sts = gr.components.Dataframe(
                        datatype=["markdown"] * 50, # hack when we don't know how many columns
                        type="pandas",
                    )
                with gr.Row():
                    data_run = gr.Button("Refresh")
                    task_sts = gr.Variable(value="STS")
                    data_run.click(get_mteb_data, inputs=[task_sts], outputs=data_sts)
        with gr.TabItem("Summarization"):
            with gr.Row():
                gr.Markdown("""
                **Summarization Leaderboard ๐Ÿ“œ**
                
                - **Metric:** Spearman correlation based on cosine similarity
                - **Languages:** English
                """)
            with gr.Row():
                data_summarization = gr.components.Dataframe(
                    DATA_SUMMARIZATION,
                    datatype="markdown",
                    type="pandas",
                    col_count=(len(DATA_SUMMARIZATION.columns), "fixed"),
                )
            with gr.Row():
                data_run = gr.Button("Refresh")
                task_summarization = gr.Variable(value="Summarization")
                data_run.click(
                    get_mteb_data,
                    inputs=[task_summarization],
                    outputs=data_summarization,
                )
    # Running the function on page load in addition to when the button is clicked
    # This is optional - If deactivated the data created loaded at "Build time" is shown like for Overall tab
    block.load(get_mteb_data, inputs=[task_bitext_mining], outputs=data_bitext_mining)
    block.load(get_mteb_data, inputs=[task_classification_en, lang_classification_en], outputs=data_classification_en)
    block.load(get_mteb_data, inputs=[task_classification], outputs=data_classification)
    block.load(get_mteb_data, inputs=[task_clustering], outputs=data_clustering)
    block.load(get_mteb_data, inputs=[task_retrieval], outputs=data_retrieval)
    block.load(get_mteb_data, inputs=[task_reranking], outputs=data_reranking)
    block.load(get_mteb_data, inputs=[task_sts_en, lang_sts_en], outputs=data_sts_en)
    block.load(get_mteb_data, inputs=[task_sts], outputs=data_sts)
    block.load(get_mteb_data, inputs=[task_summarization], outputs=data_summarization)

block.launch()


# Possible changes:
# Could check if tasks are valid (Currently users could just invent new tasks - similar for languages)
# Could make it load in the background without the Gradio logo closer to the Deep RL space
# Could add graphs / other visual content

# Sources:
# https://huggingface.co/spaces/gradio/leaderboard
# https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard
# https://getemoji.com/