Spaces:
Running
Running
File size: 9,277 Bytes
ce7c258 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
# ==========================
# Imports
# ==========================
import os, sys, random
import gradio as gr
from langchain_openai import ChatOpenAI
from langchain.schema import AIMessage, HumanMessage
from langchain.prompts import ChatPromptTemplate
from langchain.schema.output_parser import StrOutputParser
from langchain_core.runnables import RunnableLambda
from langchain_core.messages import AIMessage, AIMessageChunk, HumanMessage, HumanMessageChunk
from game_info import *
# ==========================
# Constants / Globals
# ==========================
NVIDIA_API_KEY = os.environ["API_KEY"] # API Key for the LLM - Using NVIDIA's NIM to access an 8 Billion parameter Llama3 model
CHATBOT_HEIGHT = 700 # Height of Gradio Chatbot
LINES_PER_BOX = 20 # Number of text lines in a gradio text box
SUSPECTS_PER_PAGE = 10 # Number of suspects shown per page
game = cMystery() # New mystery game imported from game_info
# ==========================
# LLM Functions
# ==========================
# Using NVIDIA's NIM (NVIDIA Inference Microservices) to access an 8 Billion parameter Llama3 model
llm = ChatOpenAI(model = "meta/llama3-8b-instruct",temperature=0.5,max_tokens=1024,timeout=None,max_retries=2,
base_url = "https://integrate.api.nvidia.com/v1",
api_key = NVIDIA_API_KEY)
# ================================
# Custom LangChain Tools and Pipes
# ================================
def output_parser(ai_message: AIMessage) -> str:
global game
current_suspect = game.get_current_suspect()
game.add_note_to_recap(ai_message.content, current_suspect) # Save a record of the conversation with the suspect name in the recap
return ai_message.content
# ==========================
# UI Functions
# ==========================
# ============================================
# Feed the chat message to the LLM
# ============================================
def predict(message, history):
global game
global llm
current_suspect = game.get_current_suspect()
if current_suspect is None:
return "Please select a suspect."
AI_Instructions = f"You are a suspect in an art theft." + \
f"Your name is {game.get_suspect_proper_name(current_suspect)} " + \
f"and your background is {game.get_suspect_background(current_suspect)}. " + \
f"Your motive for stealing the painting is {game.get_suspect_motive(current_suspect)}. " + \
f"If you stole the painting do not admit it. " + \
f"Base all conversations on the following JSON text:{game.create_interview(current_suspect)}"
prompt = ChatPromptTemplate.from_messages([
("system", f"{AI_Instructions}"),
("human", f"{message}"),
])
history_langchain_format = []
history_langchain_format.append(AIMessage(content=AI_Instructions))
history_langchain_format.append(HumanMessage(content=message))
gpt_response = llm(history_langchain_format)
output_parser(gpt_response)
response = gpt_response.content
# LCEL configuration for future game expansion / options
# lcel_chain = prompt | llm | output_parser
# response = lcel_chain.invoke(message)
return response
# ==========================
# Generate recap of game
# ==========================
def get_recap():
global game
recap = ""
recap += "๐ก Hints ๐ก \n\n" + game.get_hints_recap() + "\n" # Add revealed hints
recap += "๐ต Suspect Interview Notes ๐ต \n\n" # Add notes from interviews
recap += game.get_crime_recap()
return gr.Textbox(lines=LINES_PER_BOX, label="Recap of the Mystery", value=recap)
# ==========================
# Question suspect
# ==========================
def question_suspect(image, name):
global game
game.set_current_suspect(name)
current_suspect = game.get_current_suspect()
return gr.Textbox(lines = LINES_PER_BOX,
label = "About the Suspect",
value = game.get_suspect_profile(current_suspect))
# ==========================
# Generate game hint
# ==========================
def get_hint():
global game
return gr.Textbox(lines = LINES_PER_BOX,
label = "Hint About the Mystery",
value = game.give_hint())
# ===============================
# Reset game for a new mystery
# ===============================
def new_crime():
global game
game = cMystery()
game.print_game()
return [gr.Image (value = game.get_stolen_painting(), height=500, width=500, label = game.get_stolen_painting_name(), interactive=False),
gr.Textbox(lines = LINES_PER_BOX, label="A Crime has been Committed", value = game.get_crime_text()),
gr.Image (value = "Question_Mark.jpg", height=500, width=500, label = "Suspect", interactive=False),
gr.Textbox(lines = LINES_PER_BOX, label="About the Suspect", value = ""),]
# ============================================
# Arrest attempt - Are you correct ?
# ============================================
def arrest():
global game
current_suspect = game.get_current_suspect()
guilty_suspect = game.get_guilty_suspect_name()
if current_suspect is None:
arrest_results = "Please select a suspect on the right to arrest."
elif current_suspect == guilty_suspect:
arrest_results = "๐๐ Congratulations ๐๐ \n\nYou caught " + guilty_suspect + " and recovered the painting.\n\n" + \
guilty_suspect + " confessed why: \n\n'" + game.get_suspect_motive(guilty_suspect) + "'" + \
"and said 'I would have gotten away with it too if it weren't for you meddling detectives'"
else:
arrest_results = "โโโ You Failed Detective โโโ\n\n" + guilty_suspect + " stole the painting and snuck away while you were arresting the wrong person"
return gr.Textbox(lines = LINES_PER_BOX,
label = "Results of Your Arrest",
value = arrest_results)
# ================================
# Main Code - Draw Gradio UI
# ================================
game.print_game() # DEBUG - Print out the game settings
with gr.Blocks() as demo:
image_manor = gr.Image(value = "mystery_manor.jpg", width=2400, interactive=False)
with gr.Row():
with gr.Column():
painting = gr.Image (value = game.get_stolen_painting(), height=500, width=500, label = game.get_stolen_painting_name(), interactive=False)
crime_desc = gr.Textbox(lines = LINES_PER_BOX, label="A Crime has been Committed", value = game.get_crime_text() )
with gr.Row():
btn_new_crime = gr.Button("โก New Crime โก")
btn_recap = gr.Button("๐ก Recap ๐ก")
with gr.Column():
suspect_image = gr.Image (value = "Question_Mark.jpg", height=500,width=500, label="Suspect", interactive=False)
suspect_desc = gr.Textbox(lines = LINES_PER_BOX, label = "About the Suspect", value="")
with gr.Row():
btn_arrest= gr.Button("๐ฎ Arrest ๐ฎ")
btn_hint = gr.Button("๐ต Clue ๐ต")
with gr.Column():
suspect_list = gr.Examples(examples = game.get_suspect_images(), inputs = [suspect_image,suspect_desc], outputs=[suspect_desc], examples_per_page=SUSPECTS_PER_PAGE, fn=question_suspect, run_on_click=True, label="Suspect List", cache_examples=False)
with gr.Column():
QnA = gr.ChatInterface(fn=predict, examples=game.get_sample_questions(), title="โ"+" Question the Suspect "+"โ", fill_height=False, retry_btn=None, undo_btn=None, cache_examples=False)
btn_new_crime.click(new_crime, inputs=None, outputs=[painting, crime_desc, suspect_image, suspect_desc]) # Resets game to new one
btn_recap.click (get_recap, inputs=None, outputs=[crime_desc]) # Prints out summary of notes
btn_arrest.click (arrest, inputs=None, outputs=[suspect_desc]) # Arrest selected subject
btn_hint.click (get_hint, inputs=None, outputs=[suspect_desc]) # Ask for hint/clue
if __name__ == "__main__":
demo.launch()
|