File size: 12,201 Bytes
13362e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
# Copyright 2024 Llamole Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
from ...extras.constants import IGNORE_INDEX, BOND_INDEX, NO_LABEL_INDEX
from ...extras.logging import get_logger
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
from ..template import Template
import os
from rdkit import Chem
import torch
from torch_geometric.data import Data, Batch
import pickle
logger = get_logger(__name__)
import os
import torch
from typing import Dict
from torch_geometric.data import Data
from rdkit import Chem
import pickle
def infer_seqlen(source_len: int, target_len: int, cutoff_len: int) -> Tuple[int, int]:
if target_len * 2 < cutoff_len: # truncate source
max_target_len = cutoff_len
elif source_len * 2 < cutoff_len: # truncate target
max_target_len = cutoff_len - source_len
else: # truncate both
max_target_len = int(cutoff_len * (target_len / (source_len + target_len)))
new_target_len = min(max_target_len, target_len)
new_source_len = max(cutoff_len - new_target_len, 0)
return new_source_len, new_target_len
def encode_graph_pyg(
data_path: Optional[str] = None, mol_id_to_smiles: Optional[Dict[str, str]] = None
) -> Dict[str, Data]:
"""
Converts molecule data to a dictionary of PyTorch Geometric Data objects, with caching functionality.
Uses a sparse representation for efficiency.
Args:
data_path (Optional[str]): Path to the Hugging Face dataset folder.
mol_id_to_smiles (Optional[Dict[str, str]]): Dictionary where keys are molecule IDs
and values are SMILES strings.
Returns:
Dict[str, Data]: Dictionary where keys are molecule IDs and values are
PyTorch Geometric Data objects.
Raises:
ValueError: If both data_path and mol_id_to_smiles are None, or if data_path is provided but loading fails.
"""
print(f"Current execution directory: {os.getcwd()}")
if data_path is None and mol_id_to_smiles is None:
raise ValueError("Either data_path or mol_id_to_smiles must be provided.")
if data_path is not None:
cache_file = os.path.join(data_path, "pyg_molecule.pickle")
# Try to load cached data
if os.path.exists(cache_file):
try:
with open(cache_file, "rb") as f:
return pickle.load(f)
except Exception as e:
print(f"Failed to load cached data: {e}")
mol_id_to_pyg = {}
for mol_id, smiles in mol_id_to_smiles.items():
mol = Chem.MolFromSmiles(smiles)
if mol is None:
raise ValueError(f"Invalid SMILES string for molecule {mol_id}: {smiles}")
type_idx = []
heavy_atom_indices = []
for atom in mol.GetAtoms():
if atom.GetAtomicNum() != 1: # Exclude hydrogen atoms
type_idx.append(
119 - 2 if atom.GetSymbol() == "*" else atom.GetAtomicNum() - 2
)
heavy_atom_indices.append(atom.GetIdx())
x = torch.LongTensor(type_idx)
edge_index = []
edge_attr = []
for bond in mol.GetBonds():
start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
if start in heavy_atom_indices and end in heavy_atom_indices:
start_new, end_new = heavy_atom_indices.index(
start
), heavy_atom_indices.index(end)
edge_index.extend([[start_new, end_new], [end_new, start_new]])
bond_type = BOND_INDEX[bond.GetBondType()]
edge_attr.extend([bond_type, bond_type])
edge_index = torch.tensor(edge_index, dtype=torch.long).t().contiguous()
edge_attr = torch.tensor(edge_attr, dtype=torch.long)
# Create PyG Data object
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr)
mol_id_to_pyg[mol_id] = data
# Save cached data if data_path is provided
if data_path is not None:
with open(cache_file, "wb") as f:
pickle.dump(mol_id_to_pyg, f)
print(f"Saved PyG data to {cache_file}")
return mol_id_to_pyg
def encode_supervised_example(
prompt: Sequence[Dict[str, str]],
response: Sequence[Dict[str, str]],
system: Optional[str],
molecule_ids: List[int],
retro_product_ids: List[int],
retro_labels: List[int],
template: "Template",
tokenizer: "PreTrainedTokenizer",
data_args: "DataArguments",
) -> Tuple[List[int], List[int], List[int], List[int], List[int]]:
messages = prompt + response
input_ids, labels = [], []
final_molecule_ids = []
final_product_ids = []
final_retro_labels = []
encoded_pairs = template.encode_multiturn(tokenizer, messages, system)
special_tokens = [
"<design_start>",
"<design_end>",
"<design_body>",
"<molecule>",
"<retro_start>",
"<retro_end>",
"<retro_body>",
]
special_token_ids = template._convert_elements_to_ids(tokenizer, special_tokens)
special_token_dict = dict(zip(special_tokens, special_token_ids))
total_length = 1 if template.efficient_eos else 0
for turn_idx, (source_ids, target_ids) in enumerate(encoded_pairs):
if total_length >= data_args.cutoff_len:
break
source_len, target_len = infer_seqlen(
len(source_ids), len(target_ids), data_args.cutoff_len - total_length
)
source_ids = source_ids[:source_len]
# Ensure balanced retro tags when truncating
retro_start_indices = [
i
for i, id in enumerate(target_ids)
if id == special_token_dict["<retro_start>"]
]
retro_end_indices = [
i
for i, id in enumerate(target_ids)
if id == special_token_dict["<retro_end>"]
]
if retro_start_indices and retro_end_indices:
# Find the last matching pair that fits within target_len
last_pair_index = -1
for start, end in zip(retro_start_indices, retro_end_indices):
if end < target_len:
last_pair_index = end
else:
break
if last_pair_index >= 0:
target_len = last_pair_index + 1
else:
# If no complete pair fits, truncate before the first start tag
target_len = (
min(target_len, retro_start_indices[0])
if retro_start_indices
else target_len
)
target_ids = target_ids[:target_len]
# Calculate the number of molecules in this turn
molecules_in_turn = target_ids.count(special_token_dict["<molecule>"])
retro_start_in_turn = target_ids.count(special_token_dict["<retro_start>"])
retro_end_in_turn = target_ids.count(special_token_dict["<retro_end>"])
assert retro_start_in_turn == retro_end_in_turn
retro_product_ids_in_turn = retro_product_ids[:retro_end_in_turn]
retro_labels_in_turn = retro_labels[:retro_end_in_turn]
# Add corresponding retro_labels and retro_product_ids
final_molecule_ids.extend(molecule_ids[:molecules_in_turn])
final_product_ids.extend(retro_product_ids_in_turn)
final_retro_labels.extend(retro_labels_in_turn)
total_length += source_len + target_len
if data_args.train_on_prompt:
source_mask = source_ids
elif turn_idx != 0 and template.efficient_eos:
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (
len(source_ids) - 1
)
else:
source_mask = [IGNORE_INDEX] * len(source_ids)
source_mask = [
IGNORE_INDEX if id in special_token_dict.values() else id
for id in source_mask
]
target_ids_mask = [
id if id in [special_token_dict["<retro_start>"], special_token_dict["<design_start>"]]
else (IGNORE_INDEX if id in special_token_dict.values() else id)
for id in target_ids
]
input_ids += source_ids + target_ids
labels += source_mask + target_ids_mask
if template.efficient_eos:
input_ids += [tokenizer.eos_token_id]
labels += [tokenizer.eos_token_id]
return input_ids, labels, final_molecule_ids, final_product_ids, final_retro_labels
def preprocess_mmsupervised_dataset(
examples: Dict[str, List[Any]],
template: "Template",
tokenizer: "PreTrainedTokenizer",
data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
model_inputs = {
"input_ids": [],
"attention_mask": [],
"labels": [],
"molecule_ids": [],
"molecule_properties": [],
"retro_labels": [],
"retro_product_ids": [],
}
for i in range(len(examples["prompt"])):
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
logger.warning(
"Dropped invalid example: {}".format(
examples["prompt"][i] + examples["response"][i]
)
)
continue
retro_product_ids = examples["retro_products"][i]
retro_labels = [
NO_LABEL_INDEX if label is None else label
for label in examples["retro_labels"][i]
]
properties = [
NO_LABEL_INDEX if prop is None else prop for prop in examples["property"][i]
]
input_ids, labels, molecule_ids, retro_product_ids, retro_labels = (
encode_supervised_example(
prompt=examples["prompt"][i],
response=examples["response"][i],
system=examples["system"][i],
molecule_ids=examples["molecules"][i],
retro_product_ids=retro_product_ids,
retro_labels=retro_labels,
template=template,
tokenizer=tokenizer,
data_args=data_args,
)
)
# molecule_ids = examples["molecules"][i]
model_inputs["input_ids"].append(input_ids)
model_inputs["attention_mask"].append([1] * len(input_ids))
model_inputs["labels"].append(labels)
model_inputs["molecule_ids"].append(molecule_ids)
model_inputs["molecule_properties"].append(properties)
model_inputs["retro_labels"].append(retro_labels)
model_inputs["retro_product_ids"].append(retro_product_ids)
return model_inputs
def print_supervised_dataset_example(
example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer"
) -> None:
valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"]))
print("Print_supervised_dataset_example")
print("input_ids:\n{}".format(example["input_ids"]))
print(
"inputs:\n{}".format(
tokenizer.decode(example["input_ids"], skip_special_tokens=False)
)
)
print("label_ids:\n{}".format(example["labels"]))
print(
"labels:\n{}".format(tokenizer.decode(valid_labels, skip_special_tokens=False))
)
print("molecule_ids:\n{}".format(example["molecule_ids"]))
print("molecule_properties:\n{}".format(example["molecule_properties"]))
print("retro_labels:\n{}".format(example["retro_labels"]))
print("retro_product_ids:\n{}".format(example["retro_product_ids"]))
|