File size: 3,253 Bytes
c8eb530
546a5e2
ad35daa
546a5e2
 
9cdcc72
c37e7d0
e912c09
9cdcc72
 
 
 
 
 
 
 
ad35daa
 
 
 
 
 
9cdcc72
ad35daa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cdcc72
ad35daa
9cdcc72
 
ad35daa
9cdcc72
ad35daa
e139dcd
f617c7f
45ffe72
0a1b459
d795229
8f42210
f617c7f
 
d795229
f617c7f
 
deea3a0
c4563cf
 
dea79d3
4328889
d795229
ad35daa
9cdcc72
 
4fe3caa
ad35daa
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

'''
This script calls the model from openai api to predict the next few words.
'''
import os
from pprint import pprint
import sys
import openai
import gradio as gr
import whisper
from transformers import pipeline
import torch
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
import time

EXAMPLE_PROMPT = """This is a tool for helping someone with memory issues remember the next word. 
The predictions follow a few rules:
1) The predictions are suggestions of ways to continue the transcript as if someone forgot what the next word was.
2) The predictions do not repeat themselves.
3) The predictions focus on suggesting nouns, adjectives, and verbs.
4) The predictions are related to the context in the transcript.
    
EXAMPLES:
Transcript: Tomorrow night we're going out to 
Prediction: The Movies, A Restaurant, A Baseball Game, The Theater, A Party for a friend   
Transcript: I would like to order a cheeseburger with a side of
Prediction: Frnech fries, Milkshake, Apple slices, Side salad, Extra katsup 
Transcript: My friend Savanah is
Prediction: An elecrical engineer, A marine biologist, A classical musician 
Transcript: I need to buy a birthday
Prediction: Present, Gift, Cake, Card
Transcript: """

# whisper model specification
asr_model = whisper.load_model("tiny")

openai.api_key = os.environ["Openai_APIkey"]

# Transcribe function
def transcribe(audio_file):
    print("Transcribing")
    transcription = asr_model.transcribe(audio_file)["text"]
    return transcription

def debug_inference(audio, prompt, model, temperature, state=""):
    # Transcribe with Whisper
    print("The audio is:", audio)
    transcript = transcribe(audio)
    
    text = prompt + transcript + "\nPrediction: "
    
    response = openai.Completion.create(
                        model=model,
                        prompt=text,
                        temperature=temperature,
                        max_tokens=8,
                        n=5)

    infers = []
    temp = []
    infered=[]
    for i in range(5):
        print("print1 ", response['choices'][i]['text'])
        temp.append(response['choices'][i]['text'])
        print("print2: infers ", infers)
        print("print3: Responses ", response)
        print("Object type of response: ", type(response))
        #infered = list(map(lambda x: x.split(',')[0], infers))
        #print("Infered type is: ", type(infered))
        infers = list(map(lambda x: x.replace("\n", ""), temp))
        #infered = list(map(lambda x: x.split(','), infers))

    return transcript, state, infers, text

# get audio from microphone 
gr.Interface(
    fn=debug_inference, 
    inputs=[gr.inputs.Audio(source="microphone", type="filepath"),
            gr.inputs.Textbox(lines=15, placeholder="Enter a prompt here"),
            gr.inputs.Dropdown(["text-ada-001", "text-davinci-002", "text-davinci-003", "gpt-3.5-turbo"], label="Model"),
            gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.8, step=0.1, label="Temperature"),
            "state"
            ],
    outputs=["textbox","state","textbox", "textbox"],
    # examples=[["example_in-the-mood-to-eat.m4a", EXAMPLE_PROMPT, "text-ada-001", 0.8, ""],["","","",0.9,""]],
    live=False).launch()