|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
import re |
|
import sys |
|
|
|
import torch |
|
from examples.speech_recognition.data import AsrDataset |
|
from examples.speech_recognition.data.replabels import replabel_symbol |
|
from fairseq.data import Dictionary |
|
from fairseq.tasks import LegacyFairseqTask, register_task |
|
|
|
|
|
def get_asr_dataset_from_json(data_json_path, tgt_dict): |
|
""" |
|
Parse data json and create dataset. |
|
See scripts/asr_prep_json.py which pack json from raw files |
|
|
|
Json example: |
|
{ |
|
"utts": { |
|
"4771-29403-0025": { |
|
"input": { |
|
"length_ms": 170, |
|
"path": "/tmp/file1.flac" |
|
}, |
|
"output": { |
|
"text": "HELLO \n", |
|
"token": "HE LLO", |
|
"tokenid": "4815, 861" |
|
} |
|
}, |
|
"1564-142299-0096": { |
|
... |
|
} |
|
} |
|
""" |
|
if not os.path.isfile(data_json_path): |
|
raise FileNotFoundError("Dataset not found: {}".format(data_json_path)) |
|
with open(data_json_path, "rb") as f: |
|
data_samples = json.load(f)["utts"] |
|
assert len(data_samples) != 0 |
|
sorted_samples = sorted( |
|
data_samples.items(), |
|
key=lambda sample: int(sample[1]["input"]["length_ms"]), |
|
reverse=True, |
|
) |
|
aud_paths = [s[1]["input"]["path"] for s in sorted_samples] |
|
ids = [s[0] for s in sorted_samples] |
|
speakers = [] |
|
for s in sorted_samples: |
|
m = re.search("(.+?)-(.+?)-(.+?)", s[0]) |
|
speakers.append(m.group(1) + "_" + m.group(2)) |
|
frame_sizes = [s[1]["input"]["length_ms"] for s in sorted_samples] |
|
tgt = [ |
|
[int(i) for i in s[1]["output"]["tokenid"].split(", ")] |
|
for s in sorted_samples |
|
] |
|
|
|
tgt = [[*t, tgt_dict.eos()] for t in tgt] |
|
return AsrDataset(aud_paths, frame_sizes, tgt, tgt_dict, ids, speakers) |
|
|
|
|
|
@register_task("speech_recognition") |
|
class SpeechRecognitionTask(LegacyFairseqTask): |
|
""" |
|
Task for training speech recognition model. |
|
""" |
|
|
|
@staticmethod |
|
def add_args(parser): |
|
"""Add task-specific arguments to the parser.""" |
|
parser.add_argument("data", help="path to data directory") |
|
parser.add_argument( |
|
"--silence-token", default="\u2581", help="token for silence (used by w2l)" |
|
) |
|
parser.add_argument( |
|
"--max-source-positions", |
|
default=sys.maxsize, |
|
type=int, |
|
metavar="N", |
|
help="max number of frames in the source sequence", |
|
) |
|
parser.add_argument( |
|
"--max-target-positions", |
|
default=1024, |
|
type=int, |
|
metavar="N", |
|
help="max number of tokens in the target sequence", |
|
) |
|
|
|
def __init__(self, args, tgt_dict): |
|
super().__init__(args) |
|
self.tgt_dict = tgt_dict |
|
|
|
@classmethod |
|
def setup_task(cls, args, **kwargs): |
|
"""Setup the task (e.g., load dictionaries).""" |
|
dict_path = os.path.join(args.data, "dict.txt") |
|
if not os.path.isfile(dict_path): |
|
raise FileNotFoundError("Dict not found: {}".format(dict_path)) |
|
tgt_dict = Dictionary.load(dict_path) |
|
|
|
if args.criterion == "ctc_loss": |
|
tgt_dict.add_symbol("<ctc_blank>") |
|
elif args.criterion == "asg_loss": |
|
for i in range(1, args.max_replabel + 1): |
|
tgt_dict.add_symbol(replabel_symbol(i)) |
|
|
|
print("| dictionary: {} types".format(len(tgt_dict))) |
|
return cls(args, tgt_dict) |
|
|
|
def load_dataset(self, split, combine=False, **kwargs): |
|
"""Load a given dataset split. |
|
|
|
Args: |
|
split (str): name of the split (e.g., train, valid, test) |
|
""" |
|
data_json_path = os.path.join(self.args.data, "{}.json".format(split)) |
|
self.datasets[split] = get_asr_dataset_from_json(data_json_path, self.tgt_dict) |
|
|
|
def build_generator(self, models, args, **unused): |
|
w2l_decoder = getattr(args, "w2l_decoder", None) |
|
if w2l_decoder == "viterbi": |
|
from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder |
|
|
|
return W2lViterbiDecoder(args, self.target_dictionary) |
|
elif w2l_decoder == "kenlm": |
|
from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder |
|
|
|
return W2lKenLMDecoder(args, self.target_dictionary) |
|
elif w2l_decoder == "fairseqlm": |
|
from examples.speech_recognition.w2l_decoder import W2lFairseqLMDecoder |
|
|
|
return W2lFairseqLMDecoder(args, self.target_dictionary) |
|
else: |
|
return super().build_generator(models, args) |
|
|
|
@property |
|
def target_dictionary(self): |
|
"""Return the :class:`~fairseq.data.Dictionary` for the language |
|
model.""" |
|
return self.tgt_dict |
|
|
|
@property |
|
def source_dictionary(self): |
|
"""Return the source :class:`~fairseq.data.Dictionary` (if applicable |
|
for this task).""" |
|
return None |
|
|
|
def max_positions(self): |
|
"""Return the max speech and sentence length allowed by the task.""" |
|
return (self.args.max_source_positions, self.args.max_target_positions) |
|
|