UnIVAL / run_scripts /refcoco /scaling_best /unival_refcocoplus.sh
mshukor
init
26fd00c
raw
history blame
5.11 kB
#!/usr/bin/env
# The port for communication. Note that if you want to run multiple tasks on the same machine,
# you need to specify different port numbers.
# Number of GPUs per GPU worker
export GPUS_PER_NODE=8
# Number of GPU workers, for single-worker training, please set to 1
export NUM_NODES=$SLURM_NNODES
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_ADDR=$master_addr
# The port for communication
export MASTER_PORT=12350
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
export RANK=$SLURM_NODEID
echo "MASTER_ADDR: $MASTER_ADDR"
echo "RANK :$RANK"
echo "NUM_NODES :$NUM_NODES"
echo "GPUS_PER_NODE :$GPUS_PER_NODE"
export MIOPEN_USER_DB_PATH=/lus/home/NAT/gda2204/mshukor/.config/miopen_${MASTER_ADDR}_${SLURM_PROCID}/
echo "MIOPEN_USER_DB_PATH :$MIOPEN_USER_DB_PATH"
exp_name=unival_refcocoplus
ofa_dir=/lus/home/NAT/gda2204/mshukor/code/unival
base_data_dir=/lus/scratch/NAT/gda2204/SHARED/data
base_log_dir=/work/NAT/gda2204/mshukor/logs
new_base_log_dir=/lus/scratch/NAT/gda2204/SHARED/logs
save_dir=${new_base_log_dir}/ofa/checkpoints/refcocoplus/${exp_name}
log_dir=${save_dir}
mkdir -p $log_dir $save_dir
bpe_dir=${ofa_dir}/utils/BPE
user_dir=${ofa_dir}/ofa_module
image_dir=${base_data_dir}
data_dir=${base_data_dir}/ofa/refcocoplus_data
data=${data_dir}/refcocoplus_train_1.tsv,${data_dir}/refcocoplus_train_2.tsv,${data_dir}/refcocoplus_train_3.tsv,${data_dir}/refcocoplus_train_4.tsv,${data_dir}/refcocoplus_train_5.tsv,${data_dir}/refcocoplus_train_6.tsv,${data_dir}/refcocoplus_train_7.tsv,${data_dir}/refcocoplus_train_8.tsv,${data_dir}/refcocoplus_train_9.tsv,${data_dir}/refcocoplus_train_10.tsv,${data_dir}/refcocoplus_val.tsv
restore_file=${base_log_dir}/ofa/checkpoints/pretrain/unival_s2_hs/checkpoint1.pt
selected_cols=0,4,2,3
task=refcoco
arch=unival_base
pretrained_model=
criterion=adjust_label_smoothed_cross_entropy
label_smoothing=0.1
lr=5e-5
max_epoch=10
warmup_ratio=0.06
batch_size=8
update_freq=4
resnet_drop_path_rate=0.0
encoder_drop_path_rate=0.1
decoder_drop_path_rate=0.1
dropout=0.1
attention_dropout=0.0
max_src_length=80
max_tgt_length=20
num_bins=1000
patch_image_size=512
image_encoder_name=timm_resnet #vit_base_patch16_224
resnet_type=resnet101
save_interval=1
validate_interval_updates=2000
save_interval_updates=0
sample_patch_num='--sample-patch-num=784' # ''
echo "max_epoch "${max_epoch}
echo "lr "${lr}
echo "patch_image_size "${patch_image_size}
log_file=${log_dir}/${max_epoch}"_"${lr}"_"${patch_image_size}".log"
save_path=${save_dir}/${max_epoch}"_"${lr}"_"${patch_image_size}
mkdir -p $save_path
acc_thresh=0.5
python3 -m torch.distributed.launch \
--nnodes=${NUM_NODES} \
--nproc_per_node=${GPUS_PER_NODE} \
--master_port=${MASTER_PORT} \
--node_rank=${RANK} \
--master_addr=${MASTER_ADDR} \
--use_env ${ofa_dir}/train.py \
$data \
--selected-cols=${selected_cols} \
--bpe-dir=${bpe_dir} \
--user-dir=${user_dir} \
--restore-file=${restore_file} \
--reset-optimizer --reset-dataloader --reset-meters \
--save-dir=${save_path} \
--task=${task} \
--arch=${arch} \
--criterion=${criterion} \
--label-smoothing=${label_smoothing} \
--batch-size=${batch_size} \
--update-freq=${update_freq} \
--encoder-normalize-before \
--decoder-normalize-before \
--share-decoder-input-output-embed \
--share-all-embeddings \
--layernorm-embedding \
--patch-layernorm-embedding \
--code-layernorm-embedding \
--resnet-drop-path-rate=${resnet_drop_path_rate} \
--encoder-drop-path-rate=${encoder_drop_path_rate} \
--decoder-drop-path-rate=${decoder_drop_path_rate} \
--dropout=${dropout} \
--attention-dropout=${attention_dropout} \
--weight-decay=0.01 --optimizer=adam --adam-betas="(0.9,0.999)" --adam-eps=1e-08 --clip-norm=1.0 \
--lr-scheduler=polynomial_decay --lr=${lr} \
--max-epoch=${max_epoch} --warmup-ratio=${warmup_ratio} \
--log-format=simple --log-interval=10 \
--fixed-validation-seed=7 \
--no-epoch-checkpoints --keep-best-checkpoints=1 \
--save-interval=${save_interval} --validate-interval=1 \
--save-interval-updates=${save_interval_updates} --validate-interval-updates=${validate_interval_updates} \
--eval-acc \
--eval-args='{"beam":5,"min_len":4,"max_len_a":0,"max_len_b":4}' \
--best-checkpoint-metric=score --maximize-best-checkpoint-metric \
--max-src-length=${max_src_length} \
--max-tgt-length=${max_tgt_length} \
--find-unused-parameters \
--add-type-embedding \
--scale-attn \
--scale-fc \
--scale-heads \
--disable-entangle \
--num-bins=${num_bins} \
--patch-image-size=${patch_image_size} \
--fp16 \
--fp16-scale-window=512 \
--num-workers=0 \
--image-dir=${image_dir} \
${sample_patch_num} \
--acc-thresh=${acc_thresh} \
--image-encoder-name=${image_encoder_name} \
--strict