UnIVAL / fairseq /examples /wav2vec /wav2vec_featurize.py
mshukor
init
26fd00c
raw
history blame
7.02 kB
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Helper script to pre-compute embeddings for a flashlight (previously called wav2letter++) dataset
"""
import argparse
import glob
import os
from shutil import copy
import h5py
import numpy as np
import soundfile as sf
import torch
import tqdm
import fairseq
from torch import nn
def read_audio(fname):
""" Load an audio file and return PCM along with the sample rate """
wav, sr = sf.read(fname)
assert sr == 16e3
return wav, 16e3
class PretrainedWav2VecModel(nn.Module):
def __init__(self, fname):
super().__init__()
model, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([fname])
model = model[0]
model.eval()
self.model = model
def forward(self, x):
with torch.no_grad():
z = self.model.feature_extractor(x)
if isinstance(z, tuple):
z = z[0]
c = self.model.feature_aggregator(z)
return z, c
class EmbeddingWriterConfig(argparse.ArgumentParser):
def __init__(self):
super().__init__("Pre-compute embeddings for flashlight datasets")
kwargs = {"action": "store", "type": str, "required": True}
self.add_argument("--input", "-i", help="Input Directory", **kwargs)
self.add_argument("--output", "-o", help="Output Directory", **kwargs)
self.add_argument("--model", help="Path to model checkpoint", **kwargs)
self.add_argument("--split", help="Dataset Splits", nargs="+", **kwargs)
self.add_argument(
"--ext", default="wav", required=False, help="Audio file extension"
)
self.add_argument(
"--no-copy-labels",
action="store_true",
help="Do not copy label files. Useful for large datasets, use --targetdir in flashlight then.",
)
self.add_argument(
"--use-feat",
action="store_true",
help="Use the feature vector ('z') instead of context vector ('c') for features",
)
self.add_argument("--gpu", help="GPU to use", default=0, type=int)
class Prediction:
""" Lightweight wrapper around a fairspeech embedding model """
def __init__(self, fname, gpu=0):
self.gpu = gpu
self.model = PretrainedWav2VecModel(fname).cuda(gpu)
def __call__(self, x):
x = torch.from_numpy(x).float().cuda(self.gpu)
with torch.no_grad():
z, c = self.model(x.unsqueeze(0))
return z.squeeze(0).cpu().numpy(), c.squeeze(0).cpu().numpy()
class H5Writer:
""" Write features as hdf5 file in flashlight compatible format """
def __init__(self, fname):
self.fname = fname
os.makedirs(os.path.dirname(self.fname), exist_ok=True)
def write(self, data):
channel, T = data.shape
with h5py.File(self.fname, "w") as out_ds:
data = data.T.flatten()
out_ds["features"] = data
out_ds["info"] = np.array([16e3 // 160, T, channel])
class EmbeddingDatasetWriter(object):
"""Given a model and a flashlight dataset, pre-compute and store embeddings
Args:
input_root, str :
Path to the flashlight dataset
output_root, str :
Desired output directory. Will be created if non-existent
split, str :
Dataset split
"""
def __init__(
self,
input_root,
output_root,
split,
model_fname,
extension="wav",
gpu=0,
verbose=False,
use_feat=False,
):
assert os.path.exists(model_fname)
self.model_fname = model_fname
self.model = Prediction(self.model_fname, gpu)
self.input_root = input_root
self.output_root = output_root
self.split = split
self.verbose = verbose
self.extension = extension
self.use_feat = use_feat
assert os.path.exists(self.input_path), "Input path '{}' does not exist".format(
self.input_path
)
def _progress(self, iterable, **kwargs):
if self.verbose:
return tqdm.tqdm(iterable, **kwargs)
return iterable
def require_output_path(self, fname=None):
path = self.get_output_path(fname)
os.makedirs(path, exist_ok=True)
@property
def input_path(self):
return self.get_input_path()
@property
def output_path(self):
return self.get_output_path()
def get_input_path(self, fname=None):
if fname is None:
return os.path.join(self.input_root, self.split)
return os.path.join(self.get_input_path(), fname)
def get_output_path(self, fname=None):
if fname is None:
return os.path.join(self.output_root, self.split)
return os.path.join(self.get_output_path(), fname)
def copy_labels(self):
self.require_output_path()
labels = list(
filter(
lambda x: self.extension not in x, glob.glob(self.get_input_path("*"))
)
)
for fname in tqdm.tqdm(labels):
copy(fname, self.output_path)
@property
def input_fnames(self):
return sorted(glob.glob(self.get_input_path("*.{}".format(self.extension))))
def __len__(self):
return len(self.input_fnames)
def write_features(self):
paths = self.input_fnames
fnames_context = map(
lambda x: os.path.join(
self.output_path, x.replace("." + self.extension, ".h5context")
),
map(os.path.basename, paths),
)
for name, target_fname in self._progress(
zip(paths, fnames_context), total=len(self)
):
wav, sr = read_audio(name)
z, c = self.model(wav)
feat = z if self.use_feat else c
writer = H5Writer(target_fname)
writer.write(feat)
def __repr__(self):
return "EmbeddingDatasetWriter ({n_files} files)\n\tinput:\t{input_root}\n\toutput:\t{output_root}\n\tsplit:\t{split})".format(
n_files=len(self), **self.__dict__
)
if __name__ == "__main__":
args = EmbeddingWriterConfig().parse_args()
for split in args.split:
writer = EmbeddingDatasetWriter(
input_root=args.input,
output_root=args.output,
split=split,
model_fname=args.model,
gpu=args.gpu,
extension=args.ext,
use_feat=args.use_feat,
)
print(writer)
writer.require_output_path()
print("Writing Features...")
writer.write_features()
print("Done.")
if not args.no_copy_labels:
print("Copying label data...")
writer.copy_labels()
print("Done.")