mshukor
init
26fd00c
raw
history blame
5.4 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import json
import os
import re
import sys
import torch
from examples.speech_recognition.data import AsrDataset
from examples.speech_recognition.data.replabels import replabel_symbol
from fairseq.data import Dictionary
from fairseq.tasks import LegacyFairseqTask, register_task
def get_asr_dataset_from_json(data_json_path, tgt_dict):
"""
Parse data json and create dataset.
See scripts/asr_prep_json.py which pack json from raw files
Json example:
{
"utts": {
"4771-29403-0025": {
"input": {
"length_ms": 170,
"path": "/tmp/file1.flac"
},
"output": {
"text": "HELLO \n",
"token": "HE LLO",
"tokenid": "4815, 861"
}
},
"1564-142299-0096": {
...
}
}
"""
if not os.path.isfile(data_json_path):
raise FileNotFoundError("Dataset not found: {}".format(data_json_path))
with open(data_json_path, "rb") as f:
data_samples = json.load(f)["utts"]
assert len(data_samples) != 0
sorted_samples = sorted(
data_samples.items(),
key=lambda sample: int(sample[1]["input"]["length_ms"]),
reverse=True,
)
aud_paths = [s[1]["input"]["path"] for s in sorted_samples]
ids = [s[0] for s in sorted_samples]
speakers = []
for s in sorted_samples:
m = re.search("(.+?)-(.+?)-(.+?)", s[0])
speakers.append(m.group(1) + "_" + m.group(2))
frame_sizes = [s[1]["input"]["length_ms"] for s in sorted_samples]
tgt = [
[int(i) for i in s[1]["output"]["tokenid"].split(", ")]
for s in sorted_samples
]
# append eos
tgt = [[*t, tgt_dict.eos()] for t in tgt]
return AsrDataset(aud_paths, frame_sizes, tgt, tgt_dict, ids, speakers)
@register_task("speech_recognition")
class SpeechRecognitionTask(LegacyFairseqTask):
"""
Task for training speech recognition model.
"""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
parser.add_argument("data", help="path to data directory")
parser.add_argument(
"--silence-token", default="\u2581", help="token for silence (used by w2l)"
)
parser.add_argument(
"--max-source-positions",
default=sys.maxsize,
type=int,
metavar="N",
help="max number of frames in the source sequence",
)
parser.add_argument(
"--max-target-positions",
default=1024,
type=int,
metavar="N",
help="max number of tokens in the target sequence",
)
def __init__(self, args, tgt_dict):
super().__init__(args)
self.tgt_dict = tgt_dict
@classmethod
def setup_task(cls, args, **kwargs):
"""Setup the task (e.g., load dictionaries)."""
dict_path = os.path.join(args.data, "dict.txt")
if not os.path.isfile(dict_path):
raise FileNotFoundError("Dict not found: {}".format(dict_path))
tgt_dict = Dictionary.load(dict_path)
if args.criterion == "ctc_loss":
tgt_dict.add_symbol("<ctc_blank>")
elif args.criterion == "asg_loss":
for i in range(1, args.max_replabel + 1):
tgt_dict.add_symbol(replabel_symbol(i))
print("| dictionary: {} types".format(len(tgt_dict)))
return cls(args, tgt_dict)
def load_dataset(self, split, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
data_json_path = os.path.join(self.args.data, "{}.json".format(split))
self.datasets[split] = get_asr_dataset_from_json(data_json_path, self.tgt_dict)
def build_generator(self, models, args, **unused):
w2l_decoder = getattr(args, "w2l_decoder", None)
if w2l_decoder == "viterbi":
from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder
return W2lViterbiDecoder(args, self.target_dictionary)
elif w2l_decoder == "kenlm":
from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder
return W2lKenLMDecoder(args, self.target_dictionary)
elif w2l_decoder == "fairseqlm":
from examples.speech_recognition.w2l_decoder import W2lFairseqLMDecoder
return W2lFairseqLMDecoder(args, self.target_dictionary)
else:
return super().build_generator(models, args)
@property
def target_dictionary(self):
"""Return the :class:`~fairseq.data.Dictionary` for the language
model."""
return self.tgt_dict
@property
def source_dictionary(self):
"""Return the source :class:`~fairseq.data.Dictionary` (if applicable
for this task)."""
return None
def max_positions(self):
"""Return the max speech and sentence length allowed by the task."""
return (self.args.max_source_positions, self.args.max_target_positions)