|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass, field |
|
import json |
|
import logging |
|
from typing import Optional |
|
from argparse import Namespace |
|
from itertools import zip_longest |
|
from collections import OrderedDict |
|
|
|
import numpy as np |
|
import sacrebleu |
|
import string |
|
from fairseq import metrics, utils |
|
from fairseq.tasks import register_task |
|
|
|
from tasks.ofa_task import OFATask, OFAConfig |
|
from data.mm_data.video_caption_dataset import CaptionDataset |
|
from data.file_dataset import FileDataset |
|
from utils.cider.pyciderevalcap.ciderD.ciderD import CiderD |
|
|
|
EVAL_BLEU_ORDER = 4 |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class CaptionConfig(OFAConfig): |
|
eval_bleu: bool = field( |
|
default=False, metadata={"help": "evaluation with BLEU scores"} |
|
) |
|
eval_cider: bool = field( |
|
default=False, metadata={"help": "evaluation with CIDEr scores"} |
|
) |
|
eval_args: Optional[str] = field( |
|
default='{}', |
|
metadata={ |
|
"help": 'generation args for BLUE or CIDEr scoring, e.g., \'{"beam": 4, "lenpen": 0.6}\', as JSON string' |
|
}, |
|
) |
|
eval_print_samples: bool = field( |
|
default=False, metadata={"help": "print sample generations during validation"} |
|
) |
|
eval_cider_cached_tokens: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "path to cached cPickle file used to calculate CIDEr scores"}, |
|
) |
|
|
|
scst: bool = field( |
|
default=False, metadata={"help": "Self-critical sequence training"} |
|
) |
|
scst_args: str = field( |
|
default='{}', |
|
metadata={ |
|
"help": 'generation args for Self-critical sequence training, as JSON string' |
|
}, |
|
) |
|
|
|
|
|
@register_task("video_caption", dataclass=CaptionConfig) |
|
class VidCaptionTask(OFATask): |
|
def __init__(self, cfg: CaptionConfig, src_dict, tgt_dict): |
|
super().__init__(cfg, src_dict, tgt_dict) |
|
|
|
def load_dataset(self, split, epoch=1, combine=False, **kwargs): |
|
paths = self.cfg.data.split(',') |
|
assert len(paths) > 0 |
|
|
|
if split == 'train': |
|
file_path = paths[(epoch - 1) % (len(paths) - 1)] |
|
else: |
|
file_path = paths[-1] |
|
dataset = FileDataset(file_path, self.cfg.selected_cols) |
|
|
|
self.datasets[split] = CaptionDataset( |
|
split, |
|
dataset, |
|
self.bpe, |
|
self.src_dict, |
|
self.tgt_dict, |
|
max_src_length=self.cfg.max_src_length, |
|
max_tgt_length=self.cfg.max_tgt_length, |
|
patch_image_size=self.cfg.patch_image_size, |
|
imagenet_default_mean_and_std=self.cfg.imagenet_default_mean_and_std, |
|
scst=getattr(self.cfg, 'scst', False), |
|
image_dir=self.cfg.image_dir, |
|
patch_frame_size=self.cfg.patch_frame_size, |
|
num_frames=self.cfg.num_frames, |
|
sample_type=self.cfg.sample_type, |
|
use_dataaug=self.cfg.use_dataaug |
|
) |
|
|
|
def build_model(self, cfg): |
|
model = super().build_model(cfg) |
|
if self.cfg.eval_bleu or self.cfg.eval_cider: |
|
gen_args = json.loads(self.cfg.eval_args) |
|
self.sequence_generator = self.build_generator( |
|
[model], Namespace(**gen_args) |
|
) |
|
if self.cfg.eval_cider: |
|
self.CiderD_scorer = CiderD(df=self.cfg.eval_cider_cached_tokens) |
|
if self.cfg.scst: |
|
scst_args = json.loads(self.cfg.scst_args) |
|
self.scst_generator = self.build_generator( |
|
[model], Namespace(**scst_args) |
|
) |
|
|
|
return model |
|
|
|
def _calculate_cider_scores(self, gen_res, gt_res): |
|
''' |
|
gen_res: generated captions, list of str |
|
gt_idx: list of int, of the same length as gen_res |
|
gt_res: ground truth captions, list of list of str. |
|
gen_res[i] corresponds to gt_res[gt_idx[i]] |
|
Each image can have multiple ground truth captions |
|
''' |
|
gen_res_size = len(gen_res) |
|
|
|
res = OrderedDict() |
|
for i in range(gen_res_size): |
|
res[i] = [gen_res[i].strip()] |
|
|
|
gts = OrderedDict() |
|
gt_res_ = [ |
|
[gt_res[i][j].strip() for j in range(len(gt_res[i]))] |
|
for i in range(len(gt_res)) |
|
] |
|
for i in range(gen_res_size): |
|
gts[i] = gt_res_[i] |
|
|
|
res_ = [{'image_id': i, 'caption': res[i]} for i in range(len(res))] |
|
_, scores = self.CiderD_scorer.compute_score(gts, res_) |
|
return scores |
|
|
|
def valid_step(self, sample, model, criterion): |
|
loss, sample_size, logging_output = criterion(model, sample) |
|
|
|
model.eval() |
|
if self.cfg.eval_bleu or self.cfg.eval_cider: |
|
hyps, refs = self._inference(self.sequence_generator, sample, model) |
|
if self.cfg.eval_bleu: |
|
if self.cfg.eval_tokenized_bleu: |
|
bleu = sacrebleu.corpus_bleu(hyps, list(zip_longest(*refs)), tokenize="none") |
|
else: |
|
bleu = sacrebleu.corpus_bleu(hyps, list(zip_longest(*refs))) |
|
logging_output["_bleu_sys_len"] = bleu.sys_len |
|
logging_output["_bleu_ref_len"] = bleu.ref_len |
|
|
|
|
|
assert len(bleu.counts) == EVAL_BLEU_ORDER |
|
for i in range(EVAL_BLEU_ORDER): |
|
logging_output["_bleu_counts_" + str(i)] = bleu.counts[i] |
|
logging_output["_bleu_totals_" + str(i)] = bleu.totals[i] |
|
if self.cfg.eval_cider: |
|
scores = self._calculate_cider_scores(hyps, refs) |
|
logging_output["_cider_score_sum"] = scores.sum() |
|
logging_output["_cider_cnt"] = scores.size |
|
|
|
return loss, sample_size, logging_output |
|
|
|
def reduce_metrics(self, logging_outputs, criterion): |
|
super().reduce_metrics(logging_outputs, criterion) |
|
|
|
def sum_logs(key): |
|
import torch |
|
result = sum(log.get(key, 0) for log in logging_outputs) |
|
if torch.is_tensor(result): |
|
result = result.cpu() |
|
return result |
|
|
|
if self.cfg.eval_bleu: |
|
counts, totals = [], [] |
|
for i in range(EVAL_BLEU_ORDER): |
|
counts.append(sum_logs("_bleu_counts_" + str(i))) |
|
totals.append(sum_logs("_bleu_totals_" + str(i))) |
|
|
|
if max(totals) > 0: |
|
|
|
metrics.log_scalar("_bleu_counts", np.array(counts)) |
|
metrics.log_scalar("_bleu_totals", np.array(totals)) |
|
metrics.log_scalar("_bleu_sys_len", sum_logs("_bleu_sys_len")) |
|
metrics.log_scalar("_bleu_ref_len", sum_logs("_bleu_ref_len")) |
|
|
|
def compute_bleu(meters): |
|
import inspect |
|
import sacrebleu |
|
|
|
fn_sig = inspect.getfullargspec(sacrebleu.compute_bleu)[0] |
|
if "smooth_method" in fn_sig: |
|
smooth = {"smooth_method": "exp"} |
|
else: |
|
smooth = {"smooth": "exp"} |
|
bleu = sacrebleu.compute_bleu( |
|
correct=meters["_bleu_counts"].sum, |
|
total=meters["_bleu_totals"].sum, |
|
sys_len=meters["_bleu_sys_len"].sum, |
|
ref_len=meters["_bleu_ref_len"].sum, |
|
**smooth |
|
) |
|
return round(bleu.score, 2) |
|
|
|
metrics.log_derived("bleu", compute_bleu) |
|
|
|
if self.cfg.eval_cider: |
|
def compute_cider(meters): |
|
cider = meters["_cider_score_sum"].sum / meters["_cider_cnt"].sum |
|
cider = cider if isinstance(cider, float) else cider.item() |
|
return round(cider, 3) |
|
|
|
if sum_logs("_cider_cnt") > 0: |
|
metrics.log_scalar("_cider_score_sum", sum_logs("_cider_score_sum")) |
|
metrics.log_scalar("_cider_cnt", sum_logs("_cider_cnt")) |
|
metrics.log_derived("cider", compute_cider) |
|
|
|
def _inference(self, generator, sample, model): |
|
|
|
def decode(toks, escape_unk=False): |
|
s = self.tgt_dict.string( |
|
toks.int().cpu(), |
|
|
|
|
|
|
|
|
|
|
|
unk_string=("UNKNOWNTOKENINREF" if escape_unk else "UNKNOWNTOKENINHYP"), |
|
) |
|
if self.bpe: |
|
s = self.bpe.decode(s) |
|
return s |
|
|
|
gen_out = self.inference_step(generator, [model], sample) |
|
hyps, refs = [], [] |
|
transtab = str.maketrans({key: None for key in string.punctuation}) |
|
for i in range(len(gen_out)): |
|
decode_tokens = decode(gen_out[i][0]["tokens"]) |
|
hyps.append(decode_tokens.translate(transtab).strip()) |
|
refs.append( |
|
[ |
|
sent.translate(transtab).strip() |
|
for sent in decode( |
|
utils.strip_pad(sample["target"][i], self.tgt_dict.pad()), |
|
escape_unk=True, |
|
).split('&&') |
|
] |
|
) |
|
if self.cfg.eval_print_samples: |
|
logger.info("example hypothesis: " + hyps[0]) |
|
logger.info("example reference: " + ' && '.join(refs[0])) |
|
|
|
return hyps, refs |
|
|