|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals |
|
|
|
import logging |
|
import math |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from fairseq import utils |
|
from fairseq.criterions import FairseqCriterion, register_criterion |
|
|
|
|
|
@register_criterion("cross_entropy_acc") |
|
class CrossEntropyWithAccCriterion(FairseqCriterion): |
|
def __init__(self, task, sentence_avg): |
|
super().__init__(task) |
|
self.sentence_avg = sentence_avg |
|
|
|
def compute_loss(self, model, net_output, target, reduction, log_probs): |
|
|
|
target = target.view(-1) |
|
lprobs = model.get_normalized_probs(net_output, log_probs=log_probs) |
|
if not hasattr(lprobs, "batch_first"): |
|
logging.warning( |
|
"ERROR: we need to know whether " |
|
"batch first for the net output; " |
|
"you need to set batch_first attribute for the return value of " |
|
"model.get_normalized_probs. Now, we assume this is true, but " |
|
"in the future, we will raise exception instead. " |
|
) |
|
batch_first = getattr(lprobs, "batch_first", True) |
|
if not batch_first: |
|
lprobs = lprobs.transpose(0, 1) |
|
|
|
|
|
lprobs = lprobs.view(-1, lprobs.size(-1)) |
|
loss = F.nll_loss( |
|
lprobs, target, ignore_index=self.padding_idx, reduction=reduction |
|
) |
|
return lprobs, loss |
|
|
|
def get_logging_output(self, sample, target, lprobs, loss): |
|
target = target.view(-1) |
|
mask = target != self.padding_idx |
|
correct = torch.sum( |
|
lprobs.argmax(1).masked_select(mask) == target.masked_select(mask) |
|
) |
|
total = torch.sum(mask) |
|
sample_size = ( |
|
sample["target"].size(0) if self.sentence_avg else sample["ntokens"] |
|
) |
|
|
|
logging_output = { |
|
"loss": utils.item(loss.data), |
|
"ntokens": sample["ntokens"], |
|
"nsentences": sample["target"].size(0), |
|
"sample_size": sample_size, |
|
"correct": utils.item(correct.data), |
|
"total": utils.item(total.data), |
|
"nframes": torch.sum(sample["net_input"]["src_lengths"]).item(), |
|
} |
|
|
|
return sample_size, logging_output |
|
|
|
def forward(self, model, sample, reduction="sum", log_probs=True): |
|
"""Computes the cross entropy with accuracy metric for the given sample. |
|
|
|
This is similar to CrossEntropyCriterion in fairseq, but also |
|
computes accuracy metrics as part of logging |
|
|
|
Args: |
|
logprobs (Torch.tensor) of shape N, T, D i.e. |
|
batchsize, timesteps, dimensions |
|
targets (Torch.tensor) of shape N, T i.e batchsize, timesteps |
|
|
|
Returns: |
|
tuple: With three elements: |
|
1) the loss |
|
2) the sample size, which is used as the denominator for the gradient |
|
3) logging outputs to display while training |
|
|
|
TODO: |
|
* Currently this Criterion will only work with LSTMEncoderModels or |
|
FairseqModels which have decoder, or Models which return TorchTensor |
|
as net_output. |
|
We need to make a change to support all FairseqEncoder models. |
|
""" |
|
net_output = model(**sample["net_input"]) |
|
target = model.get_targets(sample, net_output) |
|
lprobs, loss = self.compute_loss( |
|
model, net_output, target, reduction, log_probs |
|
) |
|
sample_size, logging_output = self.get_logging_output( |
|
sample, target, lprobs, loss |
|
) |
|
return loss, sample_size, logging_output |
|
|
|
@staticmethod |
|
def aggregate_logging_outputs(logging_outputs): |
|
"""Aggregate logging outputs from data parallel training.""" |
|
correct_sum = sum(log.get("correct", 0) for log in logging_outputs) |
|
total_sum = sum(log.get("total", 0) for log in logging_outputs) |
|
loss_sum = sum(log.get("loss", 0) for log in logging_outputs) |
|
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) |
|
nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) |
|
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) |
|
nframes = sum(log.get("nframes", 0) for log in logging_outputs) |
|
agg_output = { |
|
"loss": loss_sum / sample_size / math.log(2) if sample_size > 0 else 0.0, |
|
|
|
|
|
|
|
"ntokens": ntokens, |
|
"nsentences": nsentences, |
|
"nframes": nframes, |
|
"sample_size": sample_size, |
|
"acc": correct_sum * 100.0 / total_sum if total_sum > 0 else 0.0, |
|
"correct": correct_sum, |
|
"total": total_sum, |
|
|
|
} |
|
if sample_size != ntokens: |
|
agg_output["nll_loss"] = loss_sum / ntokens / math.log(2) |
|
|
|
|
|
return agg_output |
|
|