|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" ROUGE metric from Google Research github repo. """ |
|
|
|
|
|
import absl |
|
import nltk |
|
import numpy |
|
import six |
|
from rouge_score import rouge_scorer, scoring |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{lin-2004-rouge, |
|
title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", |
|
author = "Lin, Chin-Yew", |
|
booktitle = "Text Summarization Branches Out", |
|
month = jul, |
|
year = "2004", |
|
address = "Barcelona, Spain", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://www.aclweb.org/anthology/W04-1013", |
|
pages = "74--81", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for |
|
evaluating automatic summarization and machine translation software in natural language processing. |
|
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. |
|
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. |
|
This metrics is a wrapper around Google Research reimplementation of ROUGE: |
|
https://github.com/google-research/google-research/tree/master/rouge |
|
""" |
|
|
|
_KWARGS_DESCRIPTION = """ |
|
Calculates average rouge scores for a list of hypotheses and references |
|
Args: |
|
predictions: list of predictions to score. Each predictions |
|
should be a string with tokens separated by spaces. |
|
references: list of reference for each prediction. Each |
|
reference should be a string with tokens separated by spaces. |
|
rouge_types: A list of rouge types to calculate. |
|
Valid names: |
|
`"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, |
|
`"rougeL"`: Longest common subsequence based scoring. |
|
`"rougeLSum"`: rougeLsum splits text using `"\n"`. |
|
See details in https://github.com/huggingface/datasets/issues/617 |
|
use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. |
|
use_agregator: Return aggregates if this is set to True |
|
Returns: |
|
rouge1: rouge_1 (precision, recall, f1), |
|
rouge2: rouge_2 (precision, recall, f1), |
|
rougeL: rouge_l (precision, recall, f1), |
|
rougeLsum: rouge_lsum (precision, recall, f1) |
|
Examples: |
|
>>> rouge = datasets.load_metric('rouge') |
|
>>> predictions = ["hello there", "general kenobi"] |
|
>>> references = ["hello there", "general kenobi"] |
|
>>> results = rouge.compute(predictions=predictions, references=references) |
|
>>> print(list(results.keys())) |
|
['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] |
|
>>> print(results["rouge1"]) |
|
AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) |
|
>>> print(results["rouge1"].mid.fmeasure) |
|
1.0 |
|
""" |
|
|
|
|
|
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) |
|
class Rouge(datasets.Metric): |
|
def _info(self): |
|
return datasets.MetricInfo( |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
inputs_description=_KWARGS_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"predictions": datasets.Value("string", id="sequence"), |
|
"references": datasets.Value("string", id="sequence"), |
|
} |
|
), |
|
codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"], |
|
reference_urls=[ |
|
"https://en.wikipedia.org/wiki/ROUGE_(metric)", |
|
"https://github.com/google-research/google-research/tree/master/rouge", |
|
], |
|
) |
|
|
|
def _compute(self, predictions, references, rouge_types=None, use_agregator=True, use_stemmer=False): |
|
if rouge_types is None: |
|
rouge_types = ["rouge1", "rouge2", "rougeL", "rougeLsum"] |
|
|
|
scorer = rouge_scorer.RougeScorer(rouge_types=rouge_types, use_stemmer=use_stemmer) |
|
if use_agregator: |
|
aggregator = scoring.BootstrapAggregator() |
|
else: |
|
scores = [] |
|
|
|
for ref, pred in zip(references, predictions): |
|
score = scorer.score(ref, pred) |
|
if use_agregator: |
|
aggregator.add_scores(score) |
|
else: |
|
scores.append(score) |
|
|
|
if use_agregator: |
|
result = aggregator.aggregate() |
|
else: |
|
result = {} |
|
for key in scores[0]: |
|
result[key] = list(score[key] for score in scores) |
|
|
|
return result |