|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Dict, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from fairseq import utils |
|
from fairseq.incremental_decoding_utils import with_incremental_state |
|
from fairseq.modules.fairseq_dropout import FairseqDropout |
|
from fairseq.modules.quant_noise import quant_noise |
|
from torch import Tensor, nn |
|
from torch.nn import Parameter |
|
from fairseq.modules import LayerNorm |
|
|
|
@with_incremental_state |
|
class MultiheadAttention(nn.Module): |
|
"""Multi-headed attention. |
|
|
|
See "Attention Is All You Need" for more details. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim, |
|
num_heads, |
|
kdim=None, |
|
vdim=None, |
|
dropout=0.0, |
|
bias=True, |
|
add_bias_kv=False, |
|
add_zero_attn=False, |
|
self_attention=False, |
|
encoder_decoder_attention=False, |
|
q_noise=0.0, |
|
qn_block_size=8, |
|
scale_factor=2, |
|
scale_heads=False, |
|
qk_norm=False, |
|
): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.kdim = kdim if kdim is not None else embed_dim |
|
self.vdim = vdim if vdim is not None else embed_dim |
|
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim |
|
|
|
self.num_heads = num_heads |
|
self.dropout_module = FairseqDropout( |
|
dropout, module_name=self.__class__.__name__ |
|
) |
|
|
|
self.head_dim = embed_dim // num_heads |
|
assert ( |
|
self.head_dim * num_heads == self.embed_dim |
|
), "embed_dim must be divisible by num_heads" |
|
self.scaling = float(self.head_dim * scale_factor) ** -0.5 |
|
|
|
self.self_attention = self_attention |
|
self.encoder_decoder_attention = encoder_decoder_attention |
|
self.c_attn = nn.Parameter(torch.ones((self.num_heads,)), requires_grad=True) if scale_heads else None |
|
|
|
assert not self.self_attention or self.qkv_same_dim, ( |
|
"Self-attention requires query, key and " "value to be of the same size" |
|
) |
|
|
|
self.k_proj = quant_noise( |
|
nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size |
|
) |
|
self.v_proj = quant_noise( |
|
nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size |
|
) |
|
self.q_proj = quant_noise( |
|
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size |
|
) |
|
|
|
self.out_proj = quant_noise( |
|
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size |
|
) |
|
|
|
if add_bias_kv: |
|
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) |
|
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) |
|
else: |
|
self.bias_k = self.bias_v = None |
|
|
|
self.add_zero_attn = add_zero_attn |
|
|
|
self.reset_parameters() |
|
|
|
self.onnx_trace = False |
|
|
|
self.qk_norm = qk_norm |
|
if self.qk_norm: |
|
self.q_norm = LayerNorm(embed_dim) |
|
self.k_norm = LayerNorm(embed_dim) |
|
|
|
def prepare_for_onnx_export_(self): |
|
self.onnx_trace = True |
|
|
|
def reset_parameters(self): |
|
if self.qkv_same_dim: |
|
|
|
|
|
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) |
|
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) |
|
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) |
|
else: |
|
nn.init.xavier_uniform_(self.k_proj.weight) |
|
nn.init.xavier_uniform_(self.v_proj.weight) |
|
nn.init.xavier_uniform_(self.q_proj.weight) |
|
|
|
nn.init.xavier_uniform_(self.out_proj.weight) |
|
if self.out_proj.bias is not None: |
|
nn.init.constant_(self.out_proj.bias, 0.0) |
|
if self.bias_k is not None: |
|
nn.init.xavier_normal_(self.bias_k) |
|
if self.bias_v is not None: |
|
nn.init.xavier_normal_(self.bias_v) |
|
|
|
def forward( |
|
self, |
|
query, |
|
key: Optional[Tensor], |
|
value: Optional[Tensor], |
|
key_padding_mask: Optional[Tensor] = None, |
|
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, |
|
need_weights: bool = True, |
|
static_kv: bool = False, |
|
attn_mask: Optional[Tensor] = None, |
|
self_attn_mask: Optional[Tensor] = None, |
|
before_softmax: bool = False, |
|
need_head_weights: bool = False, |
|
attn_bias: Optional[Tensor] = None, |
|
prompt_kv: Optional[Tensor] = None |
|
) -> Tuple[Tensor, Optional[Tensor]]: |
|
"""Input shape: Time x Batch x Channel |
|
|
|
Args: |
|
key_padding_mask (ByteTensor, optional): mask to exclude |
|
keys that are pads, of shape `(batch, src_len)`, where |
|
padding elements are indicated by 1s. |
|
need_weights (bool, optional): return the attention weights, |
|
averaged over heads (default: False). |
|
attn_mask (ByteTensor, optional): typically used to |
|
implement causal attention, where the mask prevents the |
|
attention from looking forward in time (default: None). |
|
before_softmax (bool, optional): return the raw attention |
|
weights and values before the attention softmax. |
|
need_head_weights (bool, optional): return the attention |
|
weights for each head. Implies *need_weights*. Default: |
|
return the average attention weights over all heads. |
|
""" |
|
if need_head_weights: |
|
need_weights = True |
|
|
|
if self.qk_norm: |
|
query = self.q_norm(query) |
|
key = self.q_norm(key) |
|
|
|
is_tpu = query.device.type == "xla" |
|
|
|
tgt_len, bsz, embed_dim = query.size() |
|
src_len = tgt_len |
|
assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}" |
|
assert list(query.size()) == [tgt_len, bsz, embed_dim] |
|
if key is not None: |
|
src_len, key_bsz, _ = key.size() |
|
if not torch.jit.is_scripting(): |
|
assert key_bsz == bsz |
|
assert value is not None |
|
assert src_len, bsz == value.shape[:2] |
|
|
|
if ( |
|
not self.onnx_trace |
|
and not is_tpu |
|
and incremental_state is None |
|
and not static_kv |
|
|
|
|
|
and not torch.jit.is_scripting() |
|
and self_attn_mask is None |
|
and attn_bias is None |
|
): |
|
assert key is not None and value is not None |
|
return F.multi_head_attention_forward( |
|
query, |
|
key, |
|
value, |
|
self.embed_dim, |
|
self.num_heads, |
|
torch.empty([0]), |
|
torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), |
|
self.bias_k, |
|
self.bias_v, |
|
self.add_zero_attn, |
|
self.dropout_module.p, |
|
self.out_proj.weight, |
|
self.out_proj.bias, |
|
self.training or self.dropout_module.apply_during_inference, |
|
key_padding_mask, |
|
need_weights, |
|
attn_mask, |
|
use_separate_proj_weight=True, |
|
q_proj_weight=self.q_proj.weight, |
|
k_proj_weight=self.k_proj.weight, |
|
v_proj_weight=self.v_proj.weight, |
|
) |
|
|
|
if incremental_state is not None: |
|
saved_state = self._get_input_buffer(incremental_state) |
|
if saved_state is not None and "prev_key" in saved_state: |
|
|
|
|
|
if static_kv: |
|
assert self.encoder_decoder_attention and not self.self_attention |
|
key = value = None |
|
else: |
|
saved_state = None |
|
|
|
if self.self_attention and self_attn_mask is None: |
|
q = self.q_proj(query) |
|
k = self.k_proj(query) |
|
v = self.v_proj(query) |
|
elif self.encoder_decoder_attention: |
|
|
|
q = self.q_proj(query) |
|
if key is None: |
|
assert value is None |
|
k = v = None |
|
else: |
|
k = self.k_proj(key) |
|
v = self.v_proj(key) |
|
|
|
else: |
|
assert key is not None and value is not None |
|
q = self.q_proj(query) |
|
k = self.k_proj(key) |
|
v = self.v_proj(value) |
|
q *= self.scaling |
|
|
|
if self.bias_k is not None: |
|
assert self.bias_v is not None |
|
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) |
|
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) |
|
if attn_mask is not None: |
|
attn_mask = torch.cat( |
|
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 |
|
) |
|
if key_padding_mask is not None: |
|
key_padding_mask = torch.cat( |
|
[ |
|
key_padding_mask, |
|
key_padding_mask.new_zeros(key_padding_mask.size(0), 1), |
|
], |
|
dim=1, |
|
) |
|
|
|
q = ( |
|
q.contiguous() |
|
.view(tgt_len, bsz * self.num_heads, self.head_dim) |
|
.transpose(0, 1) |
|
) |
|
if k is not None: |
|
k = ( |
|
k.contiguous() |
|
.view(-1, bsz * self.num_heads, self.head_dim) |
|
.transpose(0, 1) |
|
) |
|
if v is not None: |
|
v = ( |
|
v.contiguous() |
|
.view(-1, bsz * self.num_heads, self.head_dim) |
|
.transpose(0, 1) |
|
) |
|
|
|
if saved_state is not None: |
|
|
|
if "prev_key" in saved_state: |
|
_prev_key = saved_state["prev_key"] |
|
assert _prev_key is not None |
|
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) |
|
if static_kv: |
|
k = prev_key |
|
else: |
|
assert k is not None |
|
k = torch.cat([prev_key, k], dim=1) |
|
src_len = k.size(1) |
|
if "prev_value" in saved_state: |
|
_prev_value = saved_state["prev_value"] |
|
assert _prev_value is not None |
|
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) |
|
if static_kv: |
|
v = prev_value |
|
else: |
|
assert v is not None |
|
v = torch.cat([prev_value, v], dim=1) |
|
prev_key_padding_mask: Optional[Tensor] = None |
|
if "prev_key_padding_mask" in saved_state: |
|
prev_key_padding_mask = saved_state["prev_key_padding_mask"] |
|
assert k is not None and v is not None |
|
key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( |
|
key_padding_mask=key_padding_mask, |
|
prev_key_padding_mask=prev_key_padding_mask, |
|
batch_size=bsz, |
|
src_len=k.size(1), |
|
static_kv=static_kv, |
|
) |
|
|
|
saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) |
|
saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) |
|
saved_state["prev_key_padding_mask"] = key_padding_mask |
|
|
|
assert incremental_state is not None |
|
incremental_state = self._set_input_buffer(incremental_state, saved_state) |
|
assert k is not None |
|
assert k.size(1) == src_len |
|
|
|
|
|
|
|
if key_padding_mask is not None and key_padding_mask.dim() == 0: |
|
key_padding_mask = None |
|
|
|
if key_padding_mask is not None: |
|
assert key_padding_mask.size(0) == bsz |
|
assert key_padding_mask.size(1) == k.size(1) |
|
|
|
if self.add_zero_attn: |
|
assert v is not None |
|
src_len += 1 |
|
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) |
|
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) |
|
if attn_mask is not None: |
|
attn_mask = torch.cat( |
|
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 |
|
) |
|
if key_padding_mask is not None: |
|
key_padding_mask = torch.cat( |
|
[ |
|
key_padding_mask, |
|
torch.zeros(key_padding_mask.size(0), 1).type_as( |
|
key_padding_mask |
|
), |
|
], |
|
dim=1, |
|
) |
|
if prompt_kv is not None: |
|
prompt_k, prompt_v = prompt_kv.split(1) |
|
prompt_k = prompt_k.squeeze(0).reshape(k.size(0), -1, k.size(2)) |
|
prompt_v = prompt_v.squeeze(0).reshape(v.size(0), -1, v.size(2)) |
|
k = torch.cat([prompt_k, k], dim=1) |
|
v = torch.cat([prompt_v, v], dim=1) |
|
attn_weights = torch.bmm(q, k.transpose(1, 2)) |
|
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, k.size(1), bsz) |
|
|
|
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, k.size(1)] |
|
|
|
if attn_bias is not None: |
|
attn_weights[:, :, -src_len:] += attn_bias[:, :, -src_len:] |
|
|
|
if attn_mask is not None: |
|
attn_mask = attn_mask.unsqueeze(0) |
|
if self.onnx_trace: |
|
attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1) |
|
attn_weights += attn_mask |
|
|
|
if self_attn_mask is not None: |
|
self_attn_mask = self_attn_mask.unsqueeze(1).expand(bsz, self.num_heads, tgt_len, k.size(1)) |
|
attn_weights += self_attn_mask.contiguous().view(bsz * self.num_heads, tgt_len, k.size(1)) |
|
|
|
if key_padding_mask is not None: |
|
|
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, k.size(1)) |
|
if not is_tpu: |
|
attn_weights = attn_weights.masked_fill( |
|
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), |
|
float("-inf"), |
|
) |
|
else: |
|
attn_weights = attn_weights.transpose(0, 2) |
|
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf")) |
|
attn_weights = attn_weights.transpose(0, 2) |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, k.size(1)) |
|
|
|
if before_softmax: |
|
return attn_weights, v |
|
|
|
attn_weights_float = utils.softmax( |
|
attn_weights, dim=-1, onnx_trace=self.onnx_trace |
|
) |
|
attn_weights = attn_weights_float.type_as(attn_weights) |
|
attn_probs = self.dropout_module(attn_weights) |
|
|
|
assert v is not None |
|
attn = torch.bmm(attn_probs, v) |
|
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] |
|
if self.onnx_trace and attn.size(1) == 1: |
|
|
|
|
|
attn = attn.contiguous().view(tgt_len, bsz, embed_dim) |
|
else: |
|
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) |
|
if self.c_attn is not None: |
|
attn = attn.view(tgt_len, bsz, self.num_heads, self.head_dim) |
|
attn = torch.einsum('tbhd,h->tbhd', attn, self.c_attn) |
|
attn = attn.reshape(tgt_len, bsz, self.embed_dim) |
|
attn = self.out_proj(attn) |
|
attn_weights: Optional[Tensor] = None |
|
if need_weights: |
|
attn_weights = attn_weights_float.view( |
|
bsz, self.num_heads, tgt_len, k.size(1) |
|
).transpose(1, 0) |
|
if not need_head_weights: |
|
|
|
attn_weights = attn_weights.mean(dim=0) |
|
|
|
return attn, attn_weights |
|
|
|
@staticmethod |
|
def _append_prev_key_padding_mask( |
|
key_padding_mask: Optional[Tensor], |
|
prev_key_padding_mask: Optional[Tensor], |
|
batch_size: int, |
|
src_len: int, |
|
static_kv: bool, |
|
) -> Optional[Tensor]: |
|
|
|
if prev_key_padding_mask is not None and static_kv: |
|
new_key_padding_mask = prev_key_padding_mask |
|
elif prev_key_padding_mask is not None and key_padding_mask is not None: |
|
new_key_padding_mask = torch.cat( |
|
[prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 |
|
) |
|
|
|
|
|
|
|
elif prev_key_padding_mask is not None: |
|
if src_len > prev_key_padding_mask.size(1): |
|
filler = torch.zeros( |
|
(batch_size, src_len - prev_key_padding_mask.size(1)), |
|
device=prev_key_padding_mask.device, |
|
) |
|
new_key_padding_mask = torch.cat( |
|
[prev_key_padding_mask.float(), filler.float()], dim=1 |
|
) |
|
else: |
|
new_key_padding_mask = prev_key_padding_mask.float() |
|
elif key_padding_mask is not None: |
|
if src_len > key_padding_mask.size(1): |
|
filler = torch.zeros( |
|
(batch_size, src_len - key_padding_mask.size(1)), |
|
device=key_padding_mask.device, |
|
) |
|
new_key_padding_mask = torch.cat( |
|
[filler.float(), key_padding_mask.float()], dim=1 |
|
) |
|
else: |
|
new_key_padding_mask = key_padding_mask.float() |
|
else: |
|
new_key_padding_mask = prev_key_padding_mask |
|
return new_key_padding_mask |
|
|
|
@torch.jit.export |
|
def reorder_incremental_state( |
|
self, |
|
incremental_state: Dict[str, Dict[str, Optional[Tensor]]], |
|
new_order: Tensor, |
|
): |
|
"""Reorder buffered internal state (for incremental generation).""" |
|
input_buffer = self._get_input_buffer(incremental_state) |
|
if input_buffer is not None: |
|
for k in input_buffer.keys(): |
|
input_buffer_k = input_buffer[k] |
|
if input_buffer_k is not None: |
|
if self.encoder_decoder_attention and input_buffer_k.size( |
|
0 |
|
) == new_order.size(0): |
|
break |
|
input_buffer[k] = input_buffer_k.index_select(0, new_order) |
|
incremental_state = self._set_input_buffer(incremental_state, input_buffer) |
|
return incremental_state |
|
|
|
def _get_input_buffer( |
|
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] |
|
) -> Dict[str, Optional[Tensor]]: |
|
result = self.get_incremental_state(incremental_state, "attn_state") |
|
if result is not None: |
|
return result |
|
else: |
|
empty_result: Dict[str, Optional[Tensor]] = {} |
|
return empty_result |
|
|
|
def _set_input_buffer( |
|
self, |
|
incremental_state: Dict[str, Dict[str, Optional[Tensor]]], |
|
buffer: Dict[str, Optional[Tensor]], |
|
): |
|
return self.set_incremental_state(incremental_state, "attn_state", buffer) |
|
|
|
def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int): |
|
return attn_weights |
|
|
|
def upgrade_state_dict_named(self, state_dict, name): |
|
prefix = name + "." if name != "" else "" |
|
items_to_add = {} |
|
keys_to_remove = [] |
|
for k in state_dict.keys(): |
|
if k.endswith(prefix + "in_proj_weight"): |
|
|
|
dim = int(state_dict[k].shape[0] / 3) |
|
items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim] |
|
items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim] |
|
items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :] |
|
|
|
keys_to_remove.append(k) |
|
|
|
k_bias = prefix + "in_proj_bias" |
|
if k_bias in state_dict.keys(): |
|
dim = int(state_dict[k].shape[0] / 3) |
|
items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim] |
|
items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][ |
|
dim : 2 * dim |
|
] |
|
items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :] |
|
|
|
keys_to_remove.append(prefix + "in_proj_bias") |
|
|
|
for k in keys_to_remove: |
|
del state_dict[k] |
|
|
|
for key, value in items_to_add.items(): |
|
state_dict[key] = value |
|
|