File size: 2,355 Bytes
d82ec75
 
001179f
d82ec75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
001179f
d82ec75
001179f
 
 
 
 
d82ec75
001179f
d82ec75
001179f
d82ec75
001179f
 
 
 
 
 
 
 
d82ec75
001179f
 
 
 
 
 
 
 
bb5f61d
001179f
d82ec75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2ff691
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import gradio as gr
from huggingface_hub import InferenceClient
from naive_chatbot import NaiveChatbot

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    # messages = [{"role": "system", "content": system_message}]

    # for val in history:
    #     if val[0]:
    #         messages.append({"role": "user", "content": val[0]})
    #     if val[1]:
    #         messages.append({"role": "assistant", "content": val[1]})

    # messages.append({"role": "user", "content": message})

    # response = ""

    # for message in client.chat_completion(
    #     messages,
    #     max_tokens=max_tokens,
    #     stream=True,
    #     temperature=temperature,
    #     top_p=top_p,
    # ):
    #     token = message.choices[0].delta.content

    #     response += token
    my_bot = NaiveChatbot(pretrained=True,
                          query_tokenizer_path="utils/query_tokenizer.pickle",
                          intent_tokenizer_path="utils/intent_tokenizer.pickle",
                          model_weights_path="utils/checkpoint.ckpt",
                          db_responses2text_path="utils/db_responses2text.pickle",
                          db_intent2response_path="utils/db_intent2response.pickle",
                          db_transliteration_path="utils/db_ar2safebw.pickle")
    response = my_bot.get_reply(message, 0.97)
    yield response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch(share=True)