File size: 10,419 Bytes
7af8c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86388fb
7af8c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86388fb
7af8c25
daf1ce3
7af8c25
86388fb
7af8c25
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
# import gradio as gr

# def greet(name):
#     return "Hello " + name + "!!"

# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
# iface.launch()
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
import requests
import warnings
from skimage.io import imread
from skimage.color import rgb2gray
import matplotlib.pyplot as plt
from skimage.filters import sobel
import numpy as np
from heapq import *
import gradio as gr
from skimage.filters import threshold_otsu
from skimage.util import invert
import cv2,imageio
processor = TrOCRProcessor.from_pretrained('microsoft/trocr-base-handwritten')
model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-handwritten')
plt.switch_backend('Agg')
def horizontal_projections(sobel_image):
    return np.sum(sobel_image, axis=1)  
            
            
def find_peak_regions(hpp, divider=4):
    threshold = (np.max(hpp)-np.min(hpp))/divider
    peaks = []
    
    for i, hppv in enumerate(hpp):
        if hppv < threshold:
            peaks.append([i, hppv])
    return peaks

def heuristic(a, b):
    return (b[0] - a[0]) ** 2 + (b[1] - a[1]) ** 2

def get_hpp_walking_regions(peaks_index):
    hpp_clusters = []
    cluster = []
    for index, value in enumerate(peaks_index):
        cluster.append(value)

        if index < len(peaks_index)-1 and peaks_index[index+1] - value > 1:
            hpp_clusters.append(cluster)
            cluster = []

        #get the last cluster
        if index == len(peaks_index)-1:
            hpp_clusters.append(cluster)
            cluster = []
            
    return hpp_clusters

def astar(array, start, goal):

        neighbors = [(0,1),(0,-1),(1,0),(-1,0),(1,1),(1,-1),(-1,1),(-1,-1)]
        close_set = set()
        came_from = {}
        gscore = {start:0}
        fscore = {start:heuristic(start, goal)}
        oheap = []

        heappush(oheap, (fscore[start], start))
        
        while oheap:

            current = heappop(oheap)[1]

            if current == goal:
                data = []
                while current in came_from:
                    data.append(current)
                    current = came_from[current]
                return data

            close_set.add(current)
            for i, j in neighbors:
                neighbor = current[0] + i, current[1] + j            
                tentative_g_score = gscore[current] + heuristic(current, neighbor)
                if 0 <= neighbor[0] < array.shape[0]:
                    if 0 <= neighbor[1] < array.shape[1]:                
                        if array[neighbor[0]][neighbor[1]] == 1:
                            continue
                    else:
                        # array bound y walls
                        continue
                else:
                    # array bound x walls
                    continue
                    
                if neighbor in close_set and tentative_g_score >= gscore.get(neighbor, 0):
                    continue
                    
                if  tentative_g_score < gscore.get(neighbor, 0) or neighbor not in [i[1]for i in oheap]:
                    came_from[neighbor] = current
                    gscore[neighbor] = tentative_g_score
                    fscore[neighbor] = tentative_g_score + heuristic(neighbor, goal)
                    heappush(oheap, (fscore[neighbor], neighbor))
                    
        return []

def get_binary(img):
        mean = np.mean(img)
        if mean == 0.0 or mean == 1.0:
            return img

        thresh = threshold_otsu(img)
        binary = img <= thresh
        binary = binary*1
        return binary

def path_exists(window_image):
    #very basic check first then proceed to A* check
    if 0 in horizontal_projections(window_image):
        return True
    
    padded_window = np.zeros((window_image.shape[0],1))
    world_map = np.hstack((padded_window, np.hstack((window_image,padded_window)) ) )
    path = np.array(astar(world_map, (int(world_map.shape[0]/2), 0), (int(world_map.shape[0]/2), world_map.shape[1])))
    if len(path) > 0:
        return True
    
    return False

def get_road_block_regions(nmap):
    road_blocks = []
    needtobreak = False
    
    for col in range(nmap.shape[1]):
        start = col
        end = col+20
        if end > nmap.shape[1]-1:
            end = nmap.shape[1]-1
            needtobreak = True

        if path_exists(nmap[:, start:end]) == False:
            road_blocks.append(col)

        if needtobreak == True:
            break
            
    return road_blocks

def group_the_road_blocks(road_blocks):
    #group the road blocks
    road_blocks_cluster_groups = []
    road_blocks_cluster = []
    size = len(road_blocks)
    for index, value in enumerate(road_blocks):
        road_blocks_cluster.append(value)
        if index < size-1 and (road_blocks[index+1] - road_blocks[index]) > 1:
            road_blocks_cluster_groups.append([road_blocks_cluster[0], road_blocks_cluster[len(road_blocks_cluster)-1]])
            road_blocks_cluster = []

        if index == size-1 and len(road_blocks_cluster) > 0:
            road_blocks_cluster_groups.append([road_blocks_cluster[0], road_blocks_cluster[len(road_blocks_cluster)-1]])
            road_blocks_cluster = []

    return road_blocks_cluster_groups

def extract_line_from_image(image, lower_line, upper_line):
    lower_boundary = np.min(lower_line[:, 0])
    upper_boundary = np.min(upper_line[:, 0])
    img_copy = np.copy(image)
    r, c = img_copy.shape
    for index in range(c-1):
        img_copy[0:lower_line[index, 0], index] = 0
        img_copy[upper_line[index, 0]:r, index] = 0
    
    return img_copy[lower_boundary:upper_boundary, :]

def extract(image):
    img = rgb2gray(image)

    #img = rgb2gray(imread("Penwritten_2048x.jpeg"))
    #img = rgb2gray(imread("test.jpg"))
    #img = rgb2gray(imread(""))




    sobel_image = sobel(img)
    hpp = horizontal_projections(sobel_image)


    warnings.filterwarnings("ignore")
    #find the midway where we can make a threshold and extract the peaks regions
    #divider parameter value is used to threshold the peak values from non peak values.


    peaks = find_peak_regions(hpp)

    peaks_index = np.array(peaks)[:,0].astype(int)
    #print(peaks_index.shape)
    segmented_img = np.copy(img)
    r= segmented_img.shape
    for ri in range(r[0]):
        if ri in peaks_index:
            segmented_img[ri, :] = 0

    #group the peaks into walking windows


    hpp_clusters = get_hpp_walking_regions(peaks_index)
    #a star path planning algorithm 
    



    


    #Scan the paths to see if there are any blockers.
    

    

    binary_image = get_binary(img)

    for cluster_of_interest in hpp_clusters:
        nmap = binary_image[cluster_of_interest[0]:cluster_of_interest[len(cluster_of_interest)-1],:]
        road_blocks = get_road_block_regions(nmap)
        road_blocks_cluster_groups = group_the_road_blocks(road_blocks)
        #create the doorways
        for index, road_blocks in enumerate(road_blocks_cluster_groups):
            window_image = nmap[:, road_blocks[0]: road_blocks[1]+10]
            binary_image[cluster_of_interest[0]:cluster_of_interest[len(cluster_of_interest)-1],:][:, road_blocks[0]: road_blocks[1]+10][int(window_image.shape[0]/2),:] *= 0

    #now that everything is cleaner, its time to segment all the lines using the A* algorithm
    line_segments = []
    #print(len(hpp_clusters))
    #print(hpp_clusters)
    for i, cluster_of_interest in enumerate(hpp_clusters):
        nmap = binary_image[cluster_of_interest[0]:cluster_of_interest[len(cluster_of_interest)-1],:]
        path = np.array(astar(nmap, (int(nmap.shape[0]/2), 0), (int(nmap.shape[0]/2),nmap.shape[1]-1)))
        #print(path.shape)
        if path.shape[0]!=0:
            #break
            offset_from_top = cluster_of_interest[0]
            #print(offset_from_top)
            path[:,0] += offset_from_top
            #print(path)
            line_segments.append(path)
            #print(i)

    cluster_of_interest = hpp_clusters[1]
    offset_from_top = cluster_of_interest[0]
    nmap = binary_image[cluster_of_interest[0]:cluster_of_interest[len(cluster_of_interest)-1],:]
    #plt.figure(figsize=(20,20))
    #plt.imshow(invert(nmap), cmap="gray")

    path = np.array(astar(nmap, (int(nmap.shape[0]/2), 0), (int(nmap.shape[0]/2),nmap.shape[1]-1)))
    #plt.plot(path[:,1], path[:,0])

    offset_from_top = cluster_of_interest[0]



    ## add an extra line to the line segments array which represents the last bottom row on the image
    last_bottom_row = np.flip(np.column_stack(((np.ones((img.shape[1],))*img.shape[0]), np.arange(img.shape[1]))).astype(int), axis=0)
    line_segments.append(last_bottom_row)

    line_images = []



    
    line_count = len(line_segments)
    fig, ax = plt.subplots(figsize=(10,10), nrows=line_count-1)
    output = []


    for line_index in range(line_count-1):
        line_image = extract_line_from_image(img, line_segments[line_index], line_segments[line_index+1])
        line_images.append(line_image)
        #print(line_image)
        #cv2.imwrite('/Users/vatsalya/Desktop/demo.jpeg',line_image)
        

        #im=Image.fromarray(line_image)
        #im=im.convert("L")
        #im.save("/Users/vatsalya/Desktop/demo.jpeg")
        #print("#### Image Saved #######")
        imageio.imwrite('demo.jpeg',line_image)



        image = Image.open("demo.jpeg").convert("RGB")
        #print("Started Processing")
        
        pixel_values = processor(images=image, return_tensors="pt").pixel_values

        generated_ids = model.generate(pixel_values)
        generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
        print(generated_text)
        output.append(generated_text)
        #ax[line_index].imshow(line_image, cmap="gray")
    result=""
    for o in output:
        result=result+o
        result=result+" "
    return result

iface = gr.Interface(fn=extract, 
                     inputs=[gr.inputs.Image(type='filepath', label='Ideal Answer'),gr.inputs.Image(type='filepath', label='Ideal Answer Diagram'),gr.inputs.Image(type='filepath', label='Submitted Answer'),gr.inputs.Image(type='filepath', label='Submitted Answer Diagram')], 
                     outputs=gr.outputs.Textbox(),)

iface.launch(enable_queue=True)