File size: 15,573 Bytes
7af8c25
 
 
 
 
 
 
 
 
 
86388fb
7af8c25
 
65f1ee1
991cb0c
 
 
 
 
 
 
 
 
 
 
 
3a01399
991cb0c
 
11a4f88
991cb0c
 
 
7af8c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cd53b9
 
 
 
05dc37e
7af8c25
 
 
05dc37e
7af8c25
0cd53b9
05dc37e
7af8c25
 
 
 
 
 
 
 
 
 
 
 
86388fb
991cb0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f3f00d
dc30db6
 
 
 
 
d21bcc5
dc30db6
 
 
 
05dc37e
 
 
 
 
991cb0c
 
 
e5856b9
3ff62b6
b90b9c4
d348d4b
e5856b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1478149
e5856b9
 
1478149
b04d352
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
import requests
import warnings
from skimage.io import imread
from skimage.color import rgb2gray
import matplotlib.pyplot as plt
from skimage.filters import sobel
import numpy as np
from heapq import *
import gradio as gr
from skimage.filters import threshold_otsu
from skimage.util import invert
import imageio
from matplotlib.dates import SU
from regex import F
from sklearn.feature_extraction.text import TfidfVectorizer
from sentence_transformers import SentenceTransformer, util
from sklearn.metrics.pairwise import cosine_similarity
import spacy
import pandas as pd
from tqdm import tqdm
import textdistance
from spacy.lang.en.stop_words import STOP_WORDS
#import psycopg2
import os
from tensorflow.keras.applications.resnet50 import ResNet50,preprocess_input, decode_predictions
from tensorflow.keras.preprocessing import image
from sklearn.feature_extraction.text import TfidfVectorizer




processor = TrOCRProcessor.from_pretrained('microsoft/trocr-base-handwritten')
model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-handwritten')
plt.switch_backend('Agg')
def horizontal_projections(sobel_image):
    return np.sum(sobel_image, axis=1)  
            
            
def find_peak_regions(hpp, divider=4):
    threshold = (np.max(hpp)-np.min(hpp))/divider
    peaks = []
    
    for i, hppv in enumerate(hpp):
        if hppv < threshold:
            peaks.append([i, hppv])
    return peaks

def heuristic(a, b):
    return (b[0] - a[0]) ** 2 + (b[1] - a[1]) ** 2

def get_hpp_walking_regions(peaks_index):
    hpp_clusters = []
    cluster = []
    for index, value in enumerate(peaks_index):
        cluster.append(value)

        if index < len(peaks_index)-1 and peaks_index[index+1] - value > 1:
            hpp_clusters.append(cluster)
            cluster = []

        #get the last cluster
        if index == len(peaks_index)-1:
            hpp_clusters.append(cluster)
            cluster = []
            
    return hpp_clusters

def astar(array, start, goal):

        neighbors = [(0,1),(0,-1),(1,0),(-1,0),(1,1),(1,-1),(-1,1),(-1,-1)]
        close_set = set()
        came_from = {}
        gscore = {start:0}
        fscore = {start:heuristic(start, goal)}
        oheap = []

        heappush(oheap, (fscore[start], start))
        
        while oheap:

            current = heappop(oheap)[1]

            if current == goal:
                data = []
                while current in came_from:
                    data.append(current)
                    current = came_from[current]
                return data

            close_set.add(current)
            for i, j in neighbors:
                neighbor = current[0] + i, current[1] + j            
                tentative_g_score = gscore[current] + heuristic(current, neighbor)
                if 0 <= neighbor[0] < array.shape[0]:
                    if 0 <= neighbor[1] < array.shape[1]:                
                        if array[neighbor[0]][neighbor[1]] == 1:
                            continue
                    else:
                        # array bound y walls
                        continue
                else:
                    # array bound x walls
                    continue
                    
                if neighbor in close_set and tentative_g_score >= gscore.get(neighbor, 0):
                    continue
                    
                if  tentative_g_score < gscore.get(neighbor, 0) or neighbor not in [i[1]for i in oheap]:
                    came_from[neighbor] = current
                    gscore[neighbor] = tentative_g_score
                    fscore[neighbor] = tentative_g_score + heuristic(neighbor, goal)
                    heappush(oheap, (fscore[neighbor], neighbor))
                    
        return []

def get_binary(img):
        mean = np.mean(img)
        if mean == 0.0 or mean == 1.0:
            return img

        thresh = threshold_otsu(img)
        binary = img <= thresh
        binary = binary*1
        return binary

def path_exists(window_image):
    #very basic check first then proceed to A* check
    if 0 in horizontal_projections(window_image):
        return True
    
    padded_window = np.zeros((window_image.shape[0],1))
    world_map = np.hstack((padded_window, np.hstack((window_image,padded_window)) ) )
    path = np.array(astar(world_map, (int(world_map.shape[0]/2), 0), (int(world_map.shape[0]/2), world_map.shape[1])))
    if len(path) > 0:
        return True
    
    return False

def get_road_block_regions(nmap):
    road_blocks = []
    needtobreak = False
    
    for col in range(nmap.shape[1]):
        start = col
        end = col+20
        if end > nmap.shape[1]-1:
            end = nmap.shape[1]-1
            needtobreak = True

        if path_exists(nmap[:, start:end]) == False:
            road_blocks.append(col)

        if needtobreak == True:
            break
            
    return road_blocks

def group_the_road_blocks(road_blocks):
    #group the road blocks
    road_blocks_cluster_groups = []
    road_blocks_cluster = []
    size = len(road_blocks)
    for index, value in enumerate(road_blocks):
        road_blocks_cluster.append(value)
        if index < size-1 and (road_blocks[index+1] - road_blocks[index]) > 1:
            road_blocks_cluster_groups.append([road_blocks_cluster[0], road_blocks_cluster[len(road_blocks_cluster)-1]])
            road_blocks_cluster = []

        if index == size-1 and len(road_blocks_cluster) > 0:
            road_blocks_cluster_groups.append([road_blocks_cluster[0], road_blocks_cluster[len(road_blocks_cluster)-1]])
            road_blocks_cluster = []

    return road_blocks_cluster_groups

def extract_line_from_image(image, lower_line, upper_line):
    lower_boundary = np.min(lower_line[:, 0])
    upper_boundary = np.min(upper_line[:, 0])
    img_copy = np.copy(image)
    r, c = img_copy.shape
    for index in range(c-1):
        img_copy[0:lower_line[index, 0], index] = 0
        img_copy[upper_line[index, 0]:r, index] = 0
    
    return img_copy[lower_boundary:upper_boundary, :]

def extract(image):
    img = rgb2gray(image)

    #img = rgb2gray(imread("Penwritten_2048x.jpeg"))
    #img = rgb2gray(imread("test.jpg"))
    #img = rgb2gray(imread(""))




    sobel_image = sobel(img)
    hpp = horizontal_projections(sobel_image)


    warnings.filterwarnings("ignore")
    #find the midway where we can make a threshold and extract the peaks regions
    #divider parameter value is used to threshold the peak values from non peak values.


    peaks = find_peak_regions(hpp)

    peaks_index = np.array(peaks)[:,0].astype(int)
    #print(peaks_index.shape)
    segmented_img = np.copy(img)
    r= segmented_img.shape
    for ri in range(r[0]):
        if ri in peaks_index:
            segmented_img[ri, :] = 0

    #group the peaks into walking windows


    hpp_clusters = get_hpp_walking_regions(peaks_index)
    #a star path planning algorithm 
    



    


    #Scan the paths to see if there are any blockers.
    

    

    binary_image = get_binary(img)

    for cluster_of_interest in hpp_clusters:
        nmap = binary_image[cluster_of_interest[0]:cluster_of_interest[len(cluster_of_interest)-1],:]
        road_blocks = get_road_block_regions(nmap)
        road_blocks_cluster_groups = group_the_road_blocks(road_blocks)
        #create the doorways
        for index, road_blocks in enumerate(road_blocks_cluster_groups):
            window_image = nmap[:, road_blocks[0]: road_blocks[1]+10]
            binary_image[cluster_of_interest[0]:cluster_of_interest[len(cluster_of_interest)-1],:][:, road_blocks[0]: road_blocks[1]+10][int(window_image.shape[0]/2),:] *= 0

    #now that everything is cleaner, its time to segment all the lines using the A* algorithm
    line_segments = []
    #print(len(hpp_clusters))
    #print(hpp_clusters)
    for i, cluster_of_interest in enumerate(hpp_clusters):
        nmap = binary_image[cluster_of_interest[0]:cluster_of_interest[len(cluster_of_interest)-1],:]
        path = np.array(astar(nmap, (int(nmap.shape[0]/2), 0), (int(nmap.shape[0]/2),nmap.shape[1]-1)))
        #print(path.shape)
        if path.shape[0]!=0:
            #break
            offset_from_top = cluster_of_interest[0]
            #print(offset_from_top)
            path[:,0] += offset_from_top
            #print(path)
            line_segments.append(path)
            #print(i)

    cluster_of_interest = hpp_clusters[1]
    offset_from_top = cluster_of_interest[0]
    nmap = binary_image[cluster_of_interest[0]:cluster_of_interest[len(cluster_of_interest)-1],:]
    #plt.figure(figsize=(20,20))
    #plt.imshow(invert(nmap), cmap="gray")

    path = np.array(astar(nmap, (int(nmap.shape[0]/2), 0), (int(nmap.shape[0]/2),nmap.shape[1]-1)))
    #plt.plot(path[:,1], path[:,0])

    offset_from_top = cluster_of_interest[0]



    ## add an extra line to the line segments array which represents the last bottom row on the image
    last_bottom_row = np.flip(np.column_stack(((np.ones((img.shape[1],))*img.shape[0]), np.arange(img.shape[1]))).astype(int), axis=0)
    line_segments.append(last_bottom_row)

    line_images = []



    
    line_count = len(line_segments)
    fig, ax = plt.subplots(figsize=(10,10), nrows=line_count-1)
    output = []


    for line_index in range(line_count-1):
        line_image = extract_line_from_image(img, line_segments[line_index], line_segments[line_index+1])
        line_images.append(line_image)
        #print(line_image)
        #cv2.imwrite('/Users/vatsalya/Desktop/demo.jpeg',line_image)
        

        # im=Image.fromarray(line_image)
        # im=im.convert("L")
        # im.save("demo.jpeg")
        # print("#### Image Saved #######")
        imageio.imwrite('demo.jpeg',line_image)



        image = Image.open("demo.jpeg").convert("RGB")
        
        #print("Started Processing")
        #image = line_image
        pixel_values = processor(images=image, return_tensors="pt").pixel_values

        generated_ids = model.generate(pixel_values)
        generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
        print(generated_text)
        output.append(generated_text)
        #ax[line_index].imshow(line_image, cmap="gray")
    result=""
    for o in output:
        result=result+o
        result=result+" "
    return result



nlp = spacy.load("en_core_web_md")


def listToString(s):
   
    # initialize an empty string
    str1 = " "
   
    # return string 
    return (str1.join(s))

def rm_stop(my_doc):
    # Create list of word tokens
    token_list = []
    for token in my_doc:
        token_list.append(token.text)

    

    # Create list of word tokens after removing stopwords
    filtered_sentence =[] 

    for word in token_list:
        lexeme = nlp.vocab[word]
        if lexeme.is_stop == False:
            filtered_sentence.append(word)
    
    return filtered_sentence

def text_processing(sentence):

    sentence = [token.lemma_.lower()
                for token in nlp(sentence) 
                if token.is_alpha and not token.is_stop]
    
    return sentence

def jaccard_sim(sent1,sent2):
    # Text Processing
    sentence1 = text_processing(sent1)
    sentence2 = text_processing(sent2)
    
    # Jaccard similarity
    return textdistance.jaccard.normalized_similarity(sentence1, sentence2)

def sim(Ideal_Answer,Submitted_Answer):
# SBERT EMBEDDINGS
    text1=Ideal_Answer.replace("\"","").replace("\'","")
    text2=Submitted_Answer.replace("\"","").replace("\'","")
    output=[]
    model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')

    #Compute embedding for both lists
    embedding_1= model.encode(text1, convert_to_tensor=True)
    embedding_2 = model.encode(text2, convert_to_tensor=True)

    score=util.pytorch_cos_sim(embedding_1, embedding_2)
    output.append("SBERT:"+str(int(float(str(score).split("[")[2].split("]")[0])*10.0))+",")
    sbert=int(float(str(score).split("[")[2].split("]")[0])*10.0)
    #Jaccard
    output.append("Jaccard:"+str(int(jaccard_sim(text1,text2)*10.0))+",")

    #spacy average word2vec
    nlp = spacy.load("en_core_web_md")  # make sure to use larger package!
    doc1 =  listToString(rm_stop(nlp(text1)))
    doc2 =  listToString(rm_stop(nlp(text2)))

    # Similarity of two documents
    w2v=int(nlp(doc1).similarity(nlp(doc2))*10.0)
    final_score=int(0.8*sbert+0.2*w2v)
    output.append("Word2Vec:"+str(int(nlp(doc1).similarity(nlp(doc2))*10.0))+",final_score:"+str(final_score))
    out_string=listToString(output)
    #return out_string
    return str(out_string),final_score



def return_image_embedding(model,img_path):
    img = image.load_img(img_path, target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    preds = model.predict(x)
    curr_df = pd.DataFrame(preds[0]).T
    return curr_df



def draw_boxes(image, bounds, color='yellow', width=2):
    draw = ImageDraw.Draw(image)
    for bound in bounds:
        p0, p1, p2, p3 = bound[0]
        draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width)
    return image

def inference(img, lang):
    reader = easyocr.Reader(lang)
    bounds = reader.readtext(img.name)
    im = PIL.Image.open(img.name)
    draw_boxes(im, bounds)
    im.save('result.jpg')
    return ['result.jpg', pd.DataFrame(bounds).iloc[: , 1:]]

def compute_tfidf_embeddings(documents1, documents2):
    # Combine both lists of words into a single list
    combined_documents = documents1 + documents2

    # Initialize the TF-IDF vectorizer
    vectorizer = TfidfVectorizer()

    # Fit the vectorizer on the combined documents
    vectorizer.fit(combined_documents)

    # Transform the documents to TF-IDF embeddings
    embeddings1 = vectorizer.transform(documents1)
    embeddings2 = vectorizer.transform(documents2)

    return embeddings1, embeddings2


def extract_eval(image1,image2,image3,image4):
    print(image1)
    ideal_text=extract(image1)
    print("Extracting Ideal Text \n")
    print(ideal_text)
    submitted_text=extract(image3)
    print("Extracting Submitted Text \n")
    print(submitted_text)
    a,b=sim(ideal_text,submitted_text)
    print(a)
    text_sim_score=b
    model = ResNet50(include_top=False, weights='imagenet', pooling='avg')
    diagram_1_embed=return_image_embedding(model,image2)
    diagram_2_embed=return_image_embedding(model,image4)
    diagram_embed_sim_score=util.pytorch_cos_sim(embedding_1, embedding_2)
    print("Diagram Embedding Similarity Score \n")
    print(diagram_embed_sim_score)
    
    

iface = gr.Interface(fn=extract_eval, 
                     #inputs=[gr.Image(label='Ideal Answer'),gr.Image(label='Ideal Answer Diagram'),gr.Image(label='Submitted Answer'),gr.Image(label='Submitted Answer Diagram')], 
                     #inputs=gr.inputs.File(file_count="directory"),
                     inputs=["image","image","image","image"],
                     outputs=gr.outputs.Textbox(),)

iface.launch(enable_queue=True)

# def preview(files, sd: gr.SelectData):
#     return files[sd.index].name

# with gr.Blocks() as demo:
#     with gr.Row():
#         with gr.Column():
#             f = gr.File(file_types=["image"], file_count="multiple")
#             i = gr.Image()
#             btn = gr.Button()
#         with gr.Column():
#             o = gr.Image()
    
#     f.select(preview, f, i)
#     btn.click(lambda x:x, i, o)
    
# demo.launch() abc