File size: 15,573 Bytes
7af8c25 86388fb 7af8c25 65f1ee1 991cb0c 3a01399 991cb0c 11a4f88 991cb0c 7af8c25 0cd53b9 05dc37e 7af8c25 05dc37e 7af8c25 0cd53b9 05dc37e 7af8c25 86388fb 991cb0c 0f3f00d dc30db6 d21bcc5 dc30db6 05dc37e 991cb0c e5856b9 3ff62b6 b90b9c4 d348d4b e5856b9 1478149 e5856b9 1478149 b04d352 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
import requests
import warnings
from skimage.io import imread
from skimage.color import rgb2gray
import matplotlib.pyplot as plt
from skimage.filters import sobel
import numpy as np
from heapq import *
import gradio as gr
from skimage.filters import threshold_otsu
from skimage.util import invert
import imageio
from matplotlib.dates import SU
from regex import F
from sklearn.feature_extraction.text import TfidfVectorizer
from sentence_transformers import SentenceTransformer, util
from sklearn.metrics.pairwise import cosine_similarity
import spacy
import pandas as pd
from tqdm import tqdm
import textdistance
from spacy.lang.en.stop_words import STOP_WORDS
#import psycopg2
import os
from tensorflow.keras.applications.resnet50 import ResNet50,preprocess_input, decode_predictions
from tensorflow.keras.preprocessing import image
from sklearn.feature_extraction.text import TfidfVectorizer
processor = TrOCRProcessor.from_pretrained('microsoft/trocr-base-handwritten')
model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-handwritten')
plt.switch_backend('Agg')
def horizontal_projections(sobel_image):
return np.sum(sobel_image, axis=1)
def find_peak_regions(hpp, divider=4):
threshold = (np.max(hpp)-np.min(hpp))/divider
peaks = []
for i, hppv in enumerate(hpp):
if hppv < threshold:
peaks.append([i, hppv])
return peaks
def heuristic(a, b):
return (b[0] - a[0]) ** 2 + (b[1] - a[1]) ** 2
def get_hpp_walking_regions(peaks_index):
hpp_clusters = []
cluster = []
for index, value in enumerate(peaks_index):
cluster.append(value)
if index < len(peaks_index)-1 and peaks_index[index+1] - value > 1:
hpp_clusters.append(cluster)
cluster = []
#get the last cluster
if index == len(peaks_index)-1:
hpp_clusters.append(cluster)
cluster = []
return hpp_clusters
def astar(array, start, goal):
neighbors = [(0,1),(0,-1),(1,0),(-1,0),(1,1),(1,-1),(-1,1),(-1,-1)]
close_set = set()
came_from = {}
gscore = {start:0}
fscore = {start:heuristic(start, goal)}
oheap = []
heappush(oheap, (fscore[start], start))
while oheap:
current = heappop(oheap)[1]
if current == goal:
data = []
while current in came_from:
data.append(current)
current = came_from[current]
return data
close_set.add(current)
for i, j in neighbors:
neighbor = current[0] + i, current[1] + j
tentative_g_score = gscore[current] + heuristic(current, neighbor)
if 0 <= neighbor[0] < array.shape[0]:
if 0 <= neighbor[1] < array.shape[1]:
if array[neighbor[0]][neighbor[1]] == 1:
continue
else:
# array bound y walls
continue
else:
# array bound x walls
continue
if neighbor in close_set and tentative_g_score >= gscore.get(neighbor, 0):
continue
if tentative_g_score < gscore.get(neighbor, 0) or neighbor not in [i[1]for i in oheap]:
came_from[neighbor] = current
gscore[neighbor] = tentative_g_score
fscore[neighbor] = tentative_g_score + heuristic(neighbor, goal)
heappush(oheap, (fscore[neighbor], neighbor))
return []
def get_binary(img):
mean = np.mean(img)
if mean == 0.0 or mean == 1.0:
return img
thresh = threshold_otsu(img)
binary = img <= thresh
binary = binary*1
return binary
def path_exists(window_image):
#very basic check first then proceed to A* check
if 0 in horizontal_projections(window_image):
return True
padded_window = np.zeros((window_image.shape[0],1))
world_map = np.hstack((padded_window, np.hstack((window_image,padded_window)) ) )
path = np.array(astar(world_map, (int(world_map.shape[0]/2), 0), (int(world_map.shape[0]/2), world_map.shape[1])))
if len(path) > 0:
return True
return False
def get_road_block_regions(nmap):
road_blocks = []
needtobreak = False
for col in range(nmap.shape[1]):
start = col
end = col+20
if end > nmap.shape[1]-1:
end = nmap.shape[1]-1
needtobreak = True
if path_exists(nmap[:, start:end]) == False:
road_blocks.append(col)
if needtobreak == True:
break
return road_blocks
def group_the_road_blocks(road_blocks):
#group the road blocks
road_blocks_cluster_groups = []
road_blocks_cluster = []
size = len(road_blocks)
for index, value in enumerate(road_blocks):
road_blocks_cluster.append(value)
if index < size-1 and (road_blocks[index+1] - road_blocks[index]) > 1:
road_blocks_cluster_groups.append([road_blocks_cluster[0], road_blocks_cluster[len(road_blocks_cluster)-1]])
road_blocks_cluster = []
if index == size-1 and len(road_blocks_cluster) > 0:
road_blocks_cluster_groups.append([road_blocks_cluster[0], road_blocks_cluster[len(road_blocks_cluster)-1]])
road_blocks_cluster = []
return road_blocks_cluster_groups
def extract_line_from_image(image, lower_line, upper_line):
lower_boundary = np.min(lower_line[:, 0])
upper_boundary = np.min(upper_line[:, 0])
img_copy = np.copy(image)
r, c = img_copy.shape
for index in range(c-1):
img_copy[0:lower_line[index, 0], index] = 0
img_copy[upper_line[index, 0]:r, index] = 0
return img_copy[lower_boundary:upper_boundary, :]
def extract(image):
img = rgb2gray(image)
#img = rgb2gray(imread("Penwritten_2048x.jpeg"))
#img = rgb2gray(imread("test.jpg"))
#img = rgb2gray(imread(""))
sobel_image = sobel(img)
hpp = horizontal_projections(sobel_image)
warnings.filterwarnings("ignore")
#find the midway where we can make a threshold and extract the peaks regions
#divider parameter value is used to threshold the peak values from non peak values.
peaks = find_peak_regions(hpp)
peaks_index = np.array(peaks)[:,0].astype(int)
#print(peaks_index.shape)
segmented_img = np.copy(img)
r= segmented_img.shape
for ri in range(r[0]):
if ri in peaks_index:
segmented_img[ri, :] = 0
#group the peaks into walking windows
hpp_clusters = get_hpp_walking_regions(peaks_index)
#a star path planning algorithm
#Scan the paths to see if there are any blockers.
binary_image = get_binary(img)
for cluster_of_interest in hpp_clusters:
nmap = binary_image[cluster_of_interest[0]:cluster_of_interest[len(cluster_of_interest)-1],:]
road_blocks = get_road_block_regions(nmap)
road_blocks_cluster_groups = group_the_road_blocks(road_blocks)
#create the doorways
for index, road_blocks in enumerate(road_blocks_cluster_groups):
window_image = nmap[:, road_blocks[0]: road_blocks[1]+10]
binary_image[cluster_of_interest[0]:cluster_of_interest[len(cluster_of_interest)-1],:][:, road_blocks[0]: road_blocks[1]+10][int(window_image.shape[0]/2),:] *= 0
#now that everything is cleaner, its time to segment all the lines using the A* algorithm
line_segments = []
#print(len(hpp_clusters))
#print(hpp_clusters)
for i, cluster_of_interest in enumerate(hpp_clusters):
nmap = binary_image[cluster_of_interest[0]:cluster_of_interest[len(cluster_of_interest)-1],:]
path = np.array(astar(nmap, (int(nmap.shape[0]/2), 0), (int(nmap.shape[0]/2),nmap.shape[1]-1)))
#print(path.shape)
if path.shape[0]!=0:
#break
offset_from_top = cluster_of_interest[0]
#print(offset_from_top)
path[:,0] += offset_from_top
#print(path)
line_segments.append(path)
#print(i)
cluster_of_interest = hpp_clusters[1]
offset_from_top = cluster_of_interest[0]
nmap = binary_image[cluster_of_interest[0]:cluster_of_interest[len(cluster_of_interest)-1],:]
#plt.figure(figsize=(20,20))
#plt.imshow(invert(nmap), cmap="gray")
path = np.array(astar(nmap, (int(nmap.shape[0]/2), 0), (int(nmap.shape[0]/2),nmap.shape[1]-1)))
#plt.plot(path[:,1], path[:,0])
offset_from_top = cluster_of_interest[0]
## add an extra line to the line segments array which represents the last bottom row on the image
last_bottom_row = np.flip(np.column_stack(((np.ones((img.shape[1],))*img.shape[0]), np.arange(img.shape[1]))).astype(int), axis=0)
line_segments.append(last_bottom_row)
line_images = []
line_count = len(line_segments)
fig, ax = plt.subplots(figsize=(10,10), nrows=line_count-1)
output = []
for line_index in range(line_count-1):
line_image = extract_line_from_image(img, line_segments[line_index], line_segments[line_index+1])
line_images.append(line_image)
#print(line_image)
#cv2.imwrite('/Users/vatsalya/Desktop/demo.jpeg',line_image)
# im=Image.fromarray(line_image)
# im=im.convert("L")
# im.save("demo.jpeg")
# print("#### Image Saved #######")
imageio.imwrite('demo.jpeg',line_image)
image = Image.open("demo.jpeg").convert("RGB")
#print("Started Processing")
#image = line_image
pixel_values = processor(images=image, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(generated_text)
output.append(generated_text)
#ax[line_index].imshow(line_image, cmap="gray")
result=""
for o in output:
result=result+o
result=result+" "
return result
nlp = spacy.load("en_core_web_md")
def listToString(s):
# initialize an empty string
str1 = " "
# return string
return (str1.join(s))
def rm_stop(my_doc):
# Create list of word tokens
token_list = []
for token in my_doc:
token_list.append(token.text)
# Create list of word tokens after removing stopwords
filtered_sentence =[]
for word in token_list:
lexeme = nlp.vocab[word]
if lexeme.is_stop == False:
filtered_sentence.append(word)
return filtered_sentence
def text_processing(sentence):
sentence = [token.lemma_.lower()
for token in nlp(sentence)
if token.is_alpha and not token.is_stop]
return sentence
def jaccard_sim(sent1,sent2):
# Text Processing
sentence1 = text_processing(sent1)
sentence2 = text_processing(sent2)
# Jaccard similarity
return textdistance.jaccard.normalized_similarity(sentence1, sentence2)
def sim(Ideal_Answer,Submitted_Answer):
# SBERT EMBEDDINGS
text1=Ideal_Answer.replace("\"","").replace("\'","")
text2=Submitted_Answer.replace("\"","").replace("\'","")
output=[]
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
#Compute embedding for both lists
embedding_1= model.encode(text1, convert_to_tensor=True)
embedding_2 = model.encode(text2, convert_to_tensor=True)
score=util.pytorch_cos_sim(embedding_1, embedding_2)
output.append("SBERT:"+str(int(float(str(score).split("[")[2].split("]")[0])*10.0))+",")
sbert=int(float(str(score).split("[")[2].split("]")[0])*10.0)
#Jaccard
output.append("Jaccard:"+str(int(jaccard_sim(text1,text2)*10.0))+",")
#spacy average word2vec
nlp = spacy.load("en_core_web_md") # make sure to use larger package!
doc1 = listToString(rm_stop(nlp(text1)))
doc2 = listToString(rm_stop(nlp(text2)))
# Similarity of two documents
w2v=int(nlp(doc1).similarity(nlp(doc2))*10.0)
final_score=int(0.8*sbert+0.2*w2v)
output.append("Word2Vec:"+str(int(nlp(doc1).similarity(nlp(doc2))*10.0))+",final_score:"+str(final_score))
out_string=listToString(output)
#return out_string
return str(out_string),final_score
def return_image_embedding(model,img_path):
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
curr_df = pd.DataFrame(preds[0]).T
return curr_df
def draw_boxes(image, bounds, color='yellow', width=2):
draw = ImageDraw.Draw(image)
for bound in bounds:
p0, p1, p2, p3 = bound[0]
draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width)
return image
def inference(img, lang):
reader = easyocr.Reader(lang)
bounds = reader.readtext(img.name)
im = PIL.Image.open(img.name)
draw_boxes(im, bounds)
im.save('result.jpg')
return ['result.jpg', pd.DataFrame(bounds).iloc[: , 1:]]
def compute_tfidf_embeddings(documents1, documents2):
# Combine both lists of words into a single list
combined_documents = documents1 + documents2
# Initialize the TF-IDF vectorizer
vectorizer = TfidfVectorizer()
# Fit the vectorizer on the combined documents
vectorizer.fit(combined_documents)
# Transform the documents to TF-IDF embeddings
embeddings1 = vectorizer.transform(documents1)
embeddings2 = vectorizer.transform(documents2)
return embeddings1, embeddings2
def extract_eval(image1,image2,image3,image4):
print(image1)
ideal_text=extract(image1)
print("Extracting Ideal Text \n")
print(ideal_text)
submitted_text=extract(image3)
print("Extracting Submitted Text \n")
print(submitted_text)
a,b=sim(ideal_text,submitted_text)
print(a)
text_sim_score=b
model = ResNet50(include_top=False, weights='imagenet', pooling='avg')
diagram_1_embed=return_image_embedding(model,image2)
diagram_2_embed=return_image_embedding(model,image4)
diagram_embed_sim_score=util.pytorch_cos_sim(embedding_1, embedding_2)
print("Diagram Embedding Similarity Score \n")
print(diagram_embed_sim_score)
iface = gr.Interface(fn=extract_eval,
#inputs=[gr.Image(label='Ideal Answer'),gr.Image(label='Ideal Answer Diagram'),gr.Image(label='Submitted Answer'),gr.Image(label='Submitted Answer Diagram')],
#inputs=gr.inputs.File(file_count="directory"),
inputs=["image","image","image","image"],
outputs=gr.outputs.Textbox(),)
iface.launch(enable_queue=True)
# def preview(files, sd: gr.SelectData):
# return files[sd.index].name
# with gr.Blocks() as demo:
# with gr.Row():
# with gr.Column():
# f = gr.File(file_types=["image"], file_count="multiple")
# i = gr.Image()
# btn = gr.Button()
# with gr.Column():
# o = gr.Image()
# f.select(preview, f, i)
# btn.click(lambda x:x, i, o)
# demo.launch() abc |