File size: 2,129 Bytes
b74bd43
096c0b6
 
b74bd43
 
 
95cef1f
 
4c94ed1
 
b74bd43
b7549d4
721b99b
 
b74bd43
b7549d4
721b99b
 
 
b7549d4
 
c2e2c3b
 
 
 
 
 
 
 
 
346d5c5
b7549d4
c2e2c3b
721b99b
c2e2c3b
b7549d4
 
 
e15feb1
 
 
b7549d4
c2e2c3b
 
b74bd43
 
 
 
 
 
 
 
 
 
df7fa67
b74bd43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e66014
b74bd43
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from pprint import pprint, pformat
import os

import gradio as gr
import click

import torch
from rasa.nlu.model import Interpreter
from transformers import AutoTokenizer, AutoModelForSequenceClassification


# Rasa intent + entity extractor
RASA_MODEL_PATH = "woz_nlu_agent/models/nlu-lookup-1"
interpreter = Interpreter.load(RASA_MODEL_PATH)

# OOS classifier
OOS_MODEL= "msamogh/autonlp-cai-out-of-scope-649919116"
tokenizer = AutoTokenizer.from_pretrained(OOS_MODEL)
model = AutoModelForSequenceClassification.from_pretrained(OOS_MODEL)


MODEL_TYPES = {
    "Out-of-scope classifier": "oos",
    "Intent classifier": "intent_transformer",
    "Intent and Entity extractor": "rasa_intent_entity"
}

def predict(model_type, input):
    if MODEL_TYPES[model_type] == "rasa_intent_entity":
        return rasa_predict(input)
    elif MODEL_TYPES[model_type] == "oos":
        return oos_predict(input)
    elif MODEL_TYPES[model_type] == "intent_transformer":
        return "WIP: intent_transformer"

    
def oos_predict(input):
    inputs = tokenizer(input, return_tensors="pt")
    outputs = model(**inputs).logits
    outputs = torch.softmax(torch.tensor(outputs), dim=-1)[0]
    return str({"In scope": outputs[1], "Out of scope": outputs[0]})
    

def rasa_predict(input):

    def rasa_output(text):
        message = str(text).strip()
        result = interpreter.parse(message)
        return result

    response = rasa_output(input)
    
    del response["response_selector"]
    response["intent_ranking"] = response["intent_ranking"][:3]
    if "id" in response["intent"]:
        del response["intent"]["id"]
    for i in response["intent_ranking"]:
        if "id" in i:
            del i["id"]
    for e in response["entities"]:
        if "extractor" in e:
            del e["extractor"]
        if "start" in e and "end" in e:
            del e["start"]
            del e["end"]

    return pformat(response, indent=4)


def main():
    iface = gr.Interface(fn=predict, inputs=[gr.inputs.Dropdown(list(MODEL_TYPES.keys())), "text"], outputs="text")
    iface.launch()


if __name__ == "__main__":
    main()