Spaces:
Running
on
A10G
Running
on
A10G
File size: 10,527 Bytes
cb0fcd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import glob
import sys
from pathlib import Path
import shutil
from espnet2.tasks.s2t import S2TTask
from espnet2.text.sentencepiece_tokenizer import SentencepiecesTokenizer
from espnet2.text.token_id_converter import TokenIDConverter
from espnet2.s2t.espnet_model import ESPnetS2TModel
from espnet2.bin.s2t_inference import Speech2Text
import espnetez as ez
import torch
import numpy as np
import logging
import gradio as gr
import librosa
class Logger:
def __init__(self, filename):
self.terminal = sys.stdout
self.log = open(filename, "w")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
self.terminal.flush()
self.log.flush()
def isatty(self):
return False
sys.stdout = Logger("output.log")
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def get_dataset(data_path, data_info, test_count=10):
# load data
data = {}
keys = []
with open(f"{data_path}/text", "r", encoding="utf-8") as f:
for line in f.readlines():
audio_id, text = line.split(maxsplit=1)
data[audio_id.strip()] = {"text": text.strip()}
keys.append(audio_id.strip())
# load text_ctc data
with open(f"{data_path}/text_ctc", "r", encoding="utf-8") as f:
for line in f.readlines():
audio_id, text = line.split(maxsplit=1)
data[audio_id.strip()]["text_ctc"] = text.strip()
# load audio path
for audio_path in glob.glob(f"{data_path}/audio/*"):
audio_id = Path(audio_path).stem
data[audio_id]["audio_path"] = audio_path
# Convert to list
data = [{
'id': audio_id,
'text': data[audio_id]['text'],
'text_ctc': data[audio_id]['text_ctc'],
'audio_path': data[audio_id]['audio_path'],
} for audio_id in keys]
return ez.dataset.ESPnetEZDataset(data[test_count:], data_info), ez.dataset.ESPnetEZDataset(data[:test_count], data_info), data[:test_count]
class CustomFinetuneModel(ESPnetS2TModel):
def __init__(self, model, log_every=500):
super().__init__(
vocab_size=model.vocab_size,
token_list=model.token_list,
frontend=model.frontend,
specaug=model.specaug,
normalize=model.normalize,
preencoder=model.preencoder,
encoder=model.encoder,
postencoder=model.postencoder,
decoder=model.decoder,
ctc=model.ctc,
ctc_weight=model.ctc_weight,
interctc_weight=model.interctc_weight,
ignore_id=model.ignore_id,
lsm_weight=0.0,
length_normalized_loss=False,
report_cer=False,
report_wer=False,
sym_space="<space>",
sym_blank="<blank>",
sym_sos = "<sos>",
sym_eos = "<eos>",
sym_sop = "<sop>", # start of prev
sym_na = "<na>", # not available
extract_feats_in_collect_stats=model.extract_feats_in_collect_stats,
)
self.iter_count = 0
self.log_every = log_every
self.log_stats = {
'loss': 0.0,
'acc': 0.0
}
def forward(self, *args, **kwargs):
out = super().forward(*args, **kwargs)
self.log_stats['loss'] += out[1]['loss'].item()
self.log_stats['acc'] += out[1]['acc'].item()
self.iter_count += 1
if self.iter_count % self.log_every == 0:
loss = self.log_stats['loss'] / self.log_every
acc = self.log_stats['acc'] / self.log_every
print(f"[{self.iter_count}] - loss: {loss:.3f} - acc: {acc:.3f}")
self.log_stats['loss'] = 0.0
self.log_stats['acc'] = 0.0
return out
def finetune_model(lang, task, tempdir_path, log_every, max_epoch, scheduler, warmup_steps, optimizer, learning_rate, weight_decay):
"""Main function for finetuning the model."""
print("Start loading dataset...")
if len(tempdir_path) == 0:
raise gr.Error("Please upload a zip file first.")
# define tokenizer
tokenizer = SentencepiecesTokenizer("assets/owsm_ebf_v3.1_base/bpe.model")
converter = TokenIDConverter("assets/owsm_ebf_v3.1_base/tokens.txt")
def tokenize(text):
return np.array(converter.tokens2ids(tokenizer.text2tokens(text)))
data_info = {
"speech": lambda d: librosa.load(d["audio_path"], sr=16000)[0],
"text": lambda d: tokenize(f"<{lang}><{task}><notimestamps> {d['text']}"),
"text_ctc": lambda d: tokenize(d["text_ctc"]),
"text_prev": lambda d: tokenize("<na>"),
}
# load dataset and define data_info
train_dataset, test_dataset, test_list = get_dataset(tempdir_path, data_info)
print("Loaded dataset.")
gr.Info("Loaded dataset.")
# load and update configuration
print("Setting up the training configuration...")
pretrain_config = ez.config.from_yaml(
"s2t",
"assets/owsm_ebf_v3.1_base/config.yaml",
)
finetune_config = ez.config.update_finetune_config(
"s2t", pretrain_config, "assets/owsm_ebf_v3.1_base/owsm_finetune_base.yaml"
)
finetune_config['max_epoch'] = max_epoch
finetune_config['optim'] = optimizer
finetune_config['optim_conf']['lr'] = learning_rate
finetune_config['optim_conf']['weight_decay'] = weight_decay
finetune_config['scheduler'] = scheduler
finetune_config['scheduler_conf']['warmup_steps'] = warmup_steps
finetune_config['multiple_iterator'] = False
finetune_config['num_iters_per_epoch'] = None
def build_model_fn(args):
model, _ = S2TTask.build_model_from_file(
"assets/owsm_ebf_v3.1_base/config.yaml",
"assets/owsm_ebf_v3.1_base/owsm_v3.1_base.trained.pth",
device="cuda" if torch.cuda.is_available() else "cpu",
)
model.train()
print(f'Trainable parameters: {count_parameters(model)}')
model = CustomFinetuneModel(model, log_every=log_every)
return model
trainer = ez.Trainer(
task='s2t',
train_config=finetune_config,
train_dataset=train_dataset,
valid_dataset=test_dataset,
build_model_fn=build_model_fn, # provide the pre-trained model
data_info=data_info,
output_dir=f"{tempdir_path}/exp/finetune",
stats_dir=f"{tempdir_path}/exp/stats",
ngpu=1
)
gr.Info("start collect stats")
print("Start collect stats process...")
trainer.collect_stats()
gr.Info("Finished collect stats, starting training.")
print("Finished collect stats process. Start training.")
trainer.train()
gr.Info("Finished Fine-tuning! Archiving experiment files...")
print("Finished fine-tuning.")
print("Start archiving experiment files...")
print("Create zip file for the following files into `finetune.zip`:")
for f in glob.glob(f"{tempdir_path}/exp/finetune/*"):
print(f.replace(tempdir_path, ""))
shutil.make_archive(f"{tempdir_path}/finetune", 'zip', f"{tempdir_path}/exp/finetune")
gr.Info("Finished generating result file in zip!")
print("Finished archiving experiment files.")
print("Start generating test result...")
gr.Info("Start generating output for test set!")
del trainer
model = Speech2Text(
"assets/owsm_ebf_v3.1_base/config.yaml",
"assets/owsm_ebf_v3.1_base/owsm_v3.1_base.trained.pth",
device="cuda" if torch.cuda.is_available() else "cpu",
token_type="bpe",
bpemodel="assets/owsm_ebf_v3.1_base/bpe.model",
beam_size=5,
ctc_weight=0.3,
lang_sym=f"<{lang}>",
task_sym=f"<{task}>",
)
model.s2t_model.eval()
d = torch.load(f"{tempdir_path}/exp/finetune/valid.acc.ave.pth")
model.s2t_model.load_state_dict(d)
hyp = ""
with open(f"{tempdir_path}/hyp.txt", "w") as f_hyp:
for i in range(len(test_list)):
data = test_list[i]
out = model(librosa.load(data['audio_path'], sr=16000)[0])[0][3]
f_hyp.write(out + '\n')
hyp += out + '\n'
return [f"{tempdir_path}/finetune.zip", f"{tempdir_path}/ref.txt", f"{tempdir_path}/base.txt", f"{tempdir_path}/hyp.txt"], hyp
def baseline_model(lang, task, tempdir_path):
print("Start loading dataset...")
if len(tempdir_path) == 0:
raise gr.Error("Please upload a zip file first.")
# define tokenizer
tokenizer = SentencepiecesTokenizer("assets/owsm_ebf_v3.1_base/bpe.model")
converter = TokenIDConverter("assets/owsm_ebf_v3.1_base/tokens.txt")
def tokenize(text):
return np.array(converter.tokens2ids(tokenizer.text2tokens(text)))
data_info = {
"speech": lambda d: librosa.load(d["audio_path"], sr=16000)[0],
"text": lambda d: tokenize(f"<{lang}><{task}><notimestamps> {d['text']}"),
"text_ctc": lambda d: tokenize(d["text_ctc"]),
"text_prev": lambda d: tokenize("<na>"),
}
# load dataset and define data_info
train_dataset, test_dataset, test_list = get_dataset(tempdir_path, data_info)
print("Loaded dataset.")
gr.Info("Loaded dataset.")
print("Loading pretrained model...")
gr.Info("Loading pretrained model...")
model = Speech2Text(
"assets/owsm_ebf_v3.1_base/config.yaml",
"assets/owsm_ebf_v3.1_base/owsm_v3.1_base.trained.pth",
device="cuda" if torch.cuda.is_available() else "cpu",
token_type="bpe",
bpemodel="assets/owsm_ebf_v3.1_base/bpe.model",
beam_size=5,
ctc_weight=0.3,
lang_sym=f"<{lang}>",
task_sym=f"<{task}>",
)
model.s2t_model.eval()
base = ""
ref = ""
with open(f"{tempdir_path}/base.txt", "w") as f_base, open(f"{tempdir_path}/ref.txt", "w") as f_ref:
for i in range(len(test_list)):
data = test_list[i]
f_ref.write(data['text'] + '\n')
out = model(librosa.load(data['audio_path'], sr=16000)[0])[0][3]
f_base.write(out + '\n')
ref += data['text'] + '\n'
base += out + '\n'
return ref, base
|