File size: 7,590 Bytes
dbdb417
 
 
 
 
 
 
 
 
 
 
6db9565
dbdb417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cb59a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbdb417
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import glob
import os
import shutil
import sys
import re
import tempfile
import zipfile
from pathlib import Path

import gradio as gr

from finetune import finetune_model

from language import languages
from task import tasks
import matplotlib.pyplot as plt


os.environ['TEMP_DIR'] = tempfile.mkdtemp()

def load_markdown():
    with open("intro.md", "r") as f:
        return f.read()


def read_logs():
    try:
        with open(f"output.log", "r") as f:
            return f.read()
    except:
        return None


def plot_loss_acc(temp_dir, log_every):
    sys.stdout.flush()
    lines = []
    with open("output.log", "r") as f:
        for line in f.readlines():
            if re.match(r"^\[\d+\] - loss: \d+\.\d+ - acc: \d+\.\d+$", line):
                lines.append(line)
    
    losses = []
    acces = []
    if len(lines) == 0:
        return None, None
    
    for line in lines:
        _, loss, acc = line.split(" - ")
        losses.append(float(loss.split(":")[1].strip()))
        acces.append(float(acc.split(":")[1].strip()))
    
    x = [i * log_every for i in range(1, len(losses) + 1)]
    
    plt.plot(x, losses, label="loss")
    plt.xlim(log_every // 2, x[-1] + log_every // 2)
    plt.savefig(f"{temp_dir}/loss.png")
    plt.clf()
    plt.plot(x, acces, label="acc")
    plt.xlim(log_every // 2, x[-1] + log_every // 2)
    plt.savefig(f"{temp_dir}/acc.png")
    plt.clf()
    return f"{temp_dir}/acc.png", f"{temp_dir}/loss.png"


def upload_file(fileobj, temp_dir):
    """
    Upload a file and check the uploaded zip file.
    """
    # First check if a file is a zip file.
    if not zipfile.is_zipfile(fileobj.name):
        raise gr.Error("Please upload a zip file.")

    # Then unzip file
    shutil.unpack_archive(fileobj.name, temp_dir)

    # check zip file
    if not os.path.exists(os.path.join(temp_dir, "text")):
        raise gr.Error("Please upload a valid zip file.")

    if not os.path.exists(os.path.join(temp_dir, "text_ctc")):
        raise gr.Error("Please upload a valid zip file.")

    if not os.path.exists(os.path.join(temp_dir, "audio")):
        raise gr.Error("Please upload a valid zip file.")

    # check if all texts and audio matches
    audio_ids = []
    with open(os.path.join(temp_dir, "text"), "r") as f:
        for line in f.readlines():
            audio_ids.append(line.split(maxsplit=1)[0])

    with open(os.path.join(temp_dir, "text_ctc"), "r") as f:
        ctc_audio_ids = []
        for line in f.readlines():
            ctc_audio_ids.append(line.split(maxsplit=1)[0])

        if len(audio_ids) != len(ctc_audio_ids):
            raise gr.Error(
                f"Length of `text` ({len(audio_ids)}) and `text_ctc` ({len(ctc_audio_ids)}) is different."
            )

        if set(audio_ids) != set(ctc_audio_ids):
            raise gr.Error(f"`text` and `text_ctc` have different audio ids.")

    for audio_id in glob.glob(os.path.join(temp_dir, "audio", "*")):
        if not Path(audio_id).stem in audio_ids:
            raise gr.Error(f"Audio id {audio_id} is not in `text` or `text_ctc`.")

    gr.Info("Successfully uploaded and validated zip file.")

    return [fileobj]


with gr.Blocks(title="OWSM-finetune") as demo:
    tempdir_path = gr.State(os.environ['TEMP_DIR'])
    gr.Markdown(
        """# OWSM finetune demo!

Finetune `owsm_v3.1_ebf_base` with your own dataset!
Due to resource limitation, you can only train 10 epochs on maximum.

## Upload dataset and define settings
"""
    )

    # main contents
    with gr.Row():
        with gr.Column():
            file_output = gr.File()
            upload_button = gr.UploadButton("Click to Upload a File", file_count="single")
            upload_button.upload(
                upload_file, [upload_button, tempdir_path], [file_output]
            )

        with gr.Column():
            lang = gr.Dropdown(
                languages["espnet/owsm_v3.1_ebf_base"],
                label="Language",
                info="Choose language!",
                value="jpn",
                interactive=True,
            )
            task = gr.Dropdown(
                tasks["espnet/owsm_v3.1_ebf_base"],
                label="Task",
                info="Choose task!",
                value="asr",
                interactive=True,
            )

    gr.Markdown("## Set training settings")

    with gr.Row():
        with gr.Column():
            log_every = gr.Number(value=10, label="log_every", interactive=True)
            max_epoch = gr.Slider(1, 10, step=1, label="max_epoch", interactive=True)
            scheduler = gr.Dropdown(
                ["warmuplr"], label="warmup", value="warmuplr", interactive=True
            )
            warmup_steps = gr.Number(
                value=100, label="warmup_steps", interactive=True
            )

        with gr.Column():
            optimizer = gr.Dropdown(
                ["adam", "adamw", "sgd", "adadelta", "adagrad", "adamax", "asgd", "rmsprop"],
                label="optimizer",
                value="adam",
                interactive=True
            )
            learning_rate = gr.Number(
                value=1e-4, label="learning_rate", interactive=True
            )
            weight_decay = gr.Number(
                value=0.000001, label="weight_decay", interactive=True
            )

    gr.Markdown("## Logs and plots")

    with gr.Row():
        with gr.Column():
            log_output = gr.Textbox(
                show_label=False,
                interactive=False,
                max_lines=23,
                lines=23,
            )
            demo.load(read_logs, None, log_output, every=2)

        with gr.Column():
            log_acc = gr.Image(label="Accuracy", show_label=True, interactive=False)
            log_loss = gr.Image(label="Loss", show_label=True, interactive=False)
            demo.load(plot_loss_acc, [tempdir_path, log_every], [log_acc, log_loss], every=10)

    with gr.Row():
        with gr.Column():
            ref_text = gr.Textbox(
                label="Reference text",
                show_label=True,
                interactive=False,
                max_lines=10,
                lines=10,
            )
        with gr.Column():
            base_text = gr.Textbox(
                label="Baseline text",
                show_label=True,
                interactive=False,
                max_lines=10,
                lines=10,
            )

    with gr.Row():
        with gr.Column():
            hyp_text = gr.Textbox(
                label="Hypothesis text",
                show_label=True,
                interactive=False,
                max_lines=10,
                lines=10,
            )
        with gr.Column():
            trained_model = gr.File(
                label="Trained model",
                interactive=False,
            )
        
    with gr.Row():
        finetune_btn = gr.Button("Finetune Model", variant="primary")
        finetune_btn.click(
            finetune_model,
            [
                lang,
                task,
                tempdir_path,
                log_every,
                max_epoch,
                scheduler,
                warmup_steps,
                optimizer,
                learning_rate,
                weight_decay,
            ],
            [trained_model, hyp_text]
        )

    gr.Markdown(load_markdown())

if __name__ == "__main__":
    try:
        demo.queue().launch()
    except:
        print("Unexpected error:", sys.exc_info()[0])
        raise
    finally:
        shutil.rmtree(os.environ['TEMP_DIR'])