File size: 14,223 Bytes
29134bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
from sklearn.model_selection import train_test_split
from utils import tokenize_sequences, rna2vec, seq2vec, rna2vec_pretraining, get_dataset, get_scores, argument_seqset
from encoders import AptaTrans, Token_Pretrained_Model
from utils import API_Dataset, Masked_Dataset
from mcts import MCTS
from torch.utils.data import DataLoader
import torch
import torch.nn as nn
import sqlite3
import timeit
import numpy as np
import os
class AptaTransPipeline:
def __init__(
self,
d_model=128,
d_ff=512,
n_layers=6,
n_heads=8,
dropout=0.1,
load_best_pt=True,
device='cpu',
seed=1004,
):
self.seed = seed
self.device = device
self.n_apta_vocabs = 1 + 125 + 1 # pad + voca + msk
self.n_apta_target_vocabs = 1 + 343 # pad + voca
self.n_prot_vocabs = 1 + 713 + 1 # pad + voca + msk
self.n_prot_target_vocabs = 1 + 584 # pad + voca
self.apta_max_len = 275
self.prot_max_len = 867
# NOTE: Commented out to reduce overhead on model initialization
# with open('./data/protein_word_freq_3.pickle', 'rb') as fr:
# words = pickle.load(fr)
# words = words[words["freq"]>words.freq.mean()].seq.values
# self.prot_words = {word:i+1 for i, word in enumerate(words)}
self.encoder_aptamer = Token_Pretrained_Model(
n_vocabs=self.n_apta_vocabs,
n_target_vocabs=self.n_apta_target_vocabs,
d_ff=d_ff,
d_model=d_model,
n_layers=n_layers,
n_heads=n_heads,
dropout=dropout,
max_len=self.apta_max_len
).to(device)
# NOTE: Commented out to reduce overhead on model initialization
# self.encoder_protein = Token_Pretrained_Model(
# n_vocabs=self.n_prot_vocabs,
# n_target_vocabs=self.n_prot_target_vocabs,
# d_ff=d_ff,
# d_model=d_model,
# n_layers=n_layers,
# n_heads=n_heads,
# dropout=dropout,
# max_len=self.prot_max_len
# ).to(device)
if load_best_pt:
try:
self.encoder_aptamer.load_state_dict(torch.load("./encoders/rna_pretrained_encoder.pt"))
# self.encoder_protein.load_state_dict(torch.load("./encoders/protein_pretrained_encoder.pt"))
print('Best pre-trained models are loaded!')
except:
print('There are no best pre-trained model files..')
print('You need to pre-train the ecoders!')
# NOTE: Commented out to reduce overhead on model initialization
# self.model = AptaTrans(
# apta_encoder=self.encoder_aptamer.encoder,
# prot_encoder=self.encoder_protein.encoder,
# n_apta_vocabs=self.n_apta_vocabs,
# n_prot_vocabs=self.n_prot_vocabs,
# dropout=dropout,
# apta_max_len=self.apta_max_len,
# prot_max_len=self.prot_max_len
# ).to(device)
def set_data_for_training(self, batch_size):
datapath="./data/new_dataset.pickle"
ds_train, ds_test, ds_bench = get_dataset(datapath, self.prot_max_len, self.n_prot_vocabs, self.prot_words)
self.train_loader = DataLoader(API_Dataset(ds_train[0], ds_train[1], ds_train[2]), batch_size=batch_size, shuffle=True)
self.test_loader = DataLoader(API_Dataset(ds_test[0], ds_test[1], ds_test[2]), batch_size=batch_size, shuffle=False)
self.bench_loader = DataLoader(API_Dataset(ds_bench[0], ds_bench[1], ds_bench[2]), batch_size=batch_size, shuffle=False)
def set_data_rna_pt(self, batch_size, masked_rate=0.15):
conn = sqlite3.connect("./data/bpRNA.db")
results = conn.execute("SELECT * FROM RNA")
fetch = results.fetchall()
seqset = [[f[1], f[2]] for f in fetch if len(f[1]) <= 277]
seqset = argument_seqset(seqset)
train_seq, test_seq = train_test_split(seqset, test_size=0.05, random_state=self.seed)
train_x, train_y = rna2vec_pretraining(train_seq)
test_x, test_y = rna2vec_pretraining(test_seq)
rna_train = Masked_Dataset(train_x, train_y, self.apta_max_len, masked_rate, self.n_apta_vocabs-1, isrna=True)
rna_test = Masked_Dataset(test_x, test_y, self.apta_max_len, masked_rate, self.n_apta_vocabs-1, isrna=True)
self.rna_train = DataLoader(rna_train, batch_size=batch_size, shuffle=True)
self.rna_test = DataLoader(rna_test, batch_size=batch_size, shuffle=False)
def set_data_protein_pt(self, batch_size, masked_rate=0.15):
ss = ['', 'H', 'B', 'E', 'G', 'I', 'T', 'S', '-']
words_ss = np.array([i + j + k for i in ss for j in ss for k in ss[1:]])
words_ss = np.unique(words_ss)
words_ss = {word:i+1 for i, word in enumerate(words_ss)}
conn = sqlite3.connect("./data/protein_ss_keywords.db")
results = conn.execute("SELECT SEQUENCE, SS FROM PROTEIN")
fetch = results.fetchall()
seqset = [[f[0], f[1]] for f in fetch]
train_seq, test_seq = train_test_split(seqset, test_size=0.05, random_state=self.seed)
train_x, train_y = seq2vec(train_seq, self.prot_max_len, self.n_prot_vocabs, self.n_prot_target_vocabs, self.prot_words, words_ss)
test_x, test_y = seq2vec(test_seq, self.prot_max_len, self.n_prot_vocabs, self.n_prot_target_vocabs, self.prot_words, words_ss)
protein_train = Masked_Dataset(train_x, train_y, self.prot_max_len, masked_rate, self.n_prot_vocabs-1)
protein_test = Masked_Dataset(test_x, test_y, self.prot_max_len, masked_rate, self.n_prot_vocabs-1)
self.protein_train = DataLoader(protein_train, batch_size=batch_size, shuffle=True)
self.protein_test = DataLoader(protein_test, batch_size=batch_size, shuffle=False)
def train(self, epochs, lr = 1e-5):
print('Training the model!')
best_auc = 0
self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=lr, weight_decay=1e-5)
self.criterion = nn.BCELoss().to(self.device)
for epoch in range(1, epochs+1):
self.model.train()
loss_train, pred_train, target_train = self.batch_step(self.train_loader, train_mode=True)
print("\n[EPOCH: {}], \tTrain Loss: {: .6f}".format(epoch, loss_train), end='')
self.model.eval()
with torch.no_grad():
loss_test, pred_test, target_test = self.batch_step(self.test_loader, train_mode=False)
scores = get_scores(target_test, pred_test)
print("\tTest Loss: {: .6f}\tTest ACC: {:.6f}\tTest AUC: {:.6f}\tTest MCC: {:.6f}\tTest PR_AUC: {:.6f}\tF1: {:.6f}\n".format(loss_test, scores['acc'], scores['roc_auc'], scores['mcc'], scores['pr_auc'], scores['f1']))
if scores['roc_auc'] > best_auc:
best_auc = scores['roc_auc']
torch.save(self.model.module.state_dict(), "./models/AptaTrans_best_auc.pt")
print('Saved at ./models/AptaTrans_best_auc.pt!')
print('Done!')
def batch_step(self, loader, train_mode = True):
loss_total = 0
pred = np.array([])
target = np.array([])
for batch_idx, (apta, prot, y) in enumerate(loader):
if train_mode:
self.optimizer.zero_grad()
y_pred = self.predict(apta, prot)
y_true = torch.tensor(y, dtype=torch.float32).to(self.device)
loss = self.criterion(torch.flatten(y_pred), y_true)
if train_mode:
loss.backward()
self.optimizer.step()
loss_total += loss.item()
pred = np.append(pred, torch.flatten(y_pred).clone().detach().cpu().numpy())
target = np.append(target, torch.flatten(y_true).clone().detach().cpu().numpy())
mode = 'train' if train_mode else 'eval'
print(mode + "[{}/{}({:.0f}%)]".format(batch_idx, len(loader), 100. * batch_idx / len(loader)), end = "\r", flush=True)
loss_total /= len(loader)
return loss_total, pred, target
def predict(self, apta, prot):
apta, prot = apta.to(self.device), prot.to(self.device)
y_pred = self.model(apta, prot)
return y_pred
def pretain_aptamer(self, epochs, lr=1e-5):
savepath = "./models/rna_pretrained_encoder.pt"
self.encoder_aptamer = self.pretraining(self.encoder_aptamer, self.rna_train, self.rna_test, savepath, epochs, lr)
def pretrain_protein(self, epochs, lr=1e-5):
savepath = "./models/protein_pretrained_encoder.pt"
self.encoder_protein = self.pretraining(self.encoder_protein, self.protein_train, self.protein_test, savepath, epochs, lr)
def pretraining(self, model, train_loader, test_loader, savepath_model, epochs, lr=1e-5):
print('Pre-training the model')
self.optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=1e-5)
self.criterion = nn.CrossEntropyLoss().to(self.device)
best = 1000
start_time = timeit.default_timer()
for epoch in range(1, epochs+1):
model.train()
model, loss_train, mlm_train, ssp_train = self.batch_step_pt(model, train_loader, train_mode=True)
print("\n[EPOCH: {}], \tTrain Loss: {: .6f}\tTrain mlm: {: .6f}\tTrain ssp: {: .6f}".format(epoch, loss_train, mlm_train, ssp_train), end='')
model.eval()
with torch.no_grad():
model, loss_test, mlm_test, ssp_test = self.batch_step_pt(model, test_loader, train_mode=False)
print("\Test Loss: {: .6f}\tTest mlm: {: .6f}\tTest ssp: {: .6f} ".format(epoch, loss_test, mlm_test, ssp_test))
terminate_time = timeit.default_timer()
time = terminate_time-start_time
print("the time is %02d:%02d:%2f" % ((time//3600), (time//60)%60, time%60))
if (loss_test) < best:
best = loss_test
torch.save(model.module.state_dict(), savepath_model)
return model
def batch_step_pt(self, model, loader, train_mode=True):
loss_total, loss_mlm, loss_ssp = 0, 0, 0
for batch_idx, (x_masked, y_masked, x, y_ss) in enumerate(loader):
if train_mode:
self.optimizer.zero_grad()
inputs_mlm, inputs = x_masked.to(self.device), x.to(self.device)
y_pred_mlm, y_pred_ssp = model(inputs_mlm, inputs)
l_mlm = self.criterion(torch.transpose(y_pred_mlm, 1, 2), y_masked.to(self.device))
l_ssp = self.criterion(torch.transpose(y_pred_ssp, 1, 2), y_ss.to(self.device))
loss = l_mlm * 2 + l_ssp
loss_mlm += l_mlm
loss_ssp += l_ssp
loss_total += loss
if train_mode:
loss.backward()
self.optimizer.step()
mode = 'train' if train_mode else 'eval'
print(mode + "[{}/{}({:.0f}%)]".format(batch_idx, len(loader), 100. * batch_idx / len(loader)), end = "\r", flush=True)
loss_mlm /= len(loader)
loss_ssp /= len(loader)
loss_total /= len(loader)
return model, loss_total, loss_mlm, loss_ssp
def inference(self, apta, prot):
print('Predict the Aptamer-Protein Interaction')
try:
print("load the best model for api!")
self.model = torch.load('./models/aptatrans/v1_BS=16/v1_BS=16.pt', map_location=self.device)
except:
print('there is no best model file.')
print('You need to train the model for predicting API!')
print('Aptamer : ', apta)
print('Target Protein : ', prot)
apta_tokenized = torch.tensor(rna2vec(np.array(apta)), dtype=torch.int64).to(self.device)
if len(prot) > 867:
prot = prot[:867]
prot_tokenized = torch.tensor(tokenize_sequences(prot, self.prot_max_len, self.n_prot_vocabs, self.prot_words), dtype=torch.int64).to(self.device)
y_pred = self.model(apta_tokenized, prot_tokenized)
score = y_pred.detach().cpu().numpy()
print('Score : ', score)
return score
def recommend(self, target, n_aptamers, depth, iteration, verbose=True):
try:
print("load the best model for api!")
self.model.load_state_dict(torch.load('./models/AptaTrans_best_auc.pt', map_location=self.device))
except:
print('there is no best model file.')
print('You need to train the model for predicting API!')
candidates = []
encoded_targetprotein = torch.tensor(tokenize_sequences(list([target]), self.prot_max_len, self.n_prot_vocabs, self.prot_words), dtype=torch.int64).to(self.device)
mcts = MCTS(encoded_targetprotein, depth=depth, iteration=iteration, states=8, target_protein=target, device=self.device)
for _ in range(n_aptamers):
mcts.make_candidate(self.model)
candidates.append(mcts.get_candidate())
self.model.eval()
with torch.no_grad():
sim_seq = np.array([mcts.get_candidate()])
apta = torch.tensor(rna2vec(sim_seq), dtype=torch.int64).to(self.device)
score = self.model(apta, encoded_targetprotein)
if verbose:
print("candidate:\t", mcts.get_candidate(), "\tscore:\t", score)
print("*"*80)
mcts.reset()
encoded_targetprotein = torch.tensor(tokenize_sequences(list([target]), self.prot_max_len, self.n_prot_vocabs, self.prot_words), dtype=torch.int64).to(self.device)
for candidate in candidates:
with torch.no_grad():
sim_seq = np.array([candidate])
apta = torch.tensor(rna2vec(sim_seq), dtype=torch.int64).to("cpu")
score = self.model(apta, encoded_targetprotein)
if verbose:
print(f'Candidate : {candidate}, Score: {score}') |