File size: 5,527 Bytes
035fc14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
from openai import OpenAI
import gradio as gr
import json
from dotenv import load_dotenv

# Load environment variables from the .env file de forma local
load_dotenv()
import base64

with open("Iso_Logotipo_Ceibal.png", "rb") as image_file:
    encoded_image = base64.b64encode(image_file.read()).decode()


client1= OpenAI(api_key=os.environ['OPENAI_API_KEY'])
client2= OpenAI(api_key=os.environ['OPENAI_API_KEY'])


def clear_chat(message, chat_history):
     return "", []

def add_new_message_client1(message,person, chat_history):
     new_chat = []
     
     new_chat.append({"role": "system", "content": 'Sos {} y tendr谩s que responder preguntas, las respuestas tienen que ser c贸mo si las hubiera dicho {} '.format(person,person)})
   
     for turn in chat_history:
          user, bot = turn
          new_chat.append({"role": "user", "content": user})
          new_chat.append({"role": "assistant","content":bot})
     new_chat.append({"role": "user","content":message})
     return new_chat
def add_new_message_client2(message,person, chat_history):
     new_chat = []
     
     new_chat.append({"role": "system", "content": 'Sos {} y tendr谩s que responder preguntas, las respuestas tienen que ser c贸mo si las hubiera dicho {} '.format(person,person)})
   
     for turn in chat_history:
          user, bot = turn
          new_chat.append({"role": "user", "content": user})
          new_chat.append({"role": "assistant","content":bot})
     new_chat.append({"role": "user","content":message})
     return new_chat   
          
counter2 =1
def respond(person1,person2, chat_history):
    print(chat_history)
    global counter2
    if(len(chat_history)<1):
        message="Hola"
        prompt = add_new_message_client1(message, person1, chat_history)
        response = client1.chat.completions.create(
                model="gpt-3.5-turbo",
                messages= prompt,
                temperature=0.5,
                max_tokens=1000,
                stream=False,
                )
        chat_history.append((message, response.choices[0].message.content))
        
    else:
        counter2 +=1
        if(counter2 % 2==0):
            prompt = add_new_message_client1(chat_history[-1][1], person1, chat_history)
            response = client1.chat.completions.create(
                model="gpt-3.5-turbo",
                messages= prompt,
                temperature=0.5,
                max_tokens=1000,
                stream=False,
                )
            chat_history.append((response.choices[0].message.content, "" ))
            

        else:
            prompt =add_new_message_client2(chat_history[-1][1], person2, chat_history)
            response = client2.chat.completions.create(
                model="gpt-3.5-turbo",
                messages= prompt,
                temperature=0.5,
                max_tokens=1000,
                stream=False,
                )
            chat_history[-1][1]=response.choices[0].message.content #.append([chat_history[-1][1], response.choices[0].message.content])
    print(chat_history)
            
    token_counter = 0 
    partial_words = "" 

    counter=0
    partial_message = "" 
    print(chat_history)
    return "", chat_history
    # for chunk in response:
    #     if len(chunk.choices[0].delta.content) != 0:
    #         partial_message = partial_message + chunk.choices[0].delta.content
    #         yield partial_message
    # for chunk in response:
    #     print(chunk)
    #     print( "text",chunk.choices[0].delta.content)
    #     chunk_message = chunk.choices[0].delta
    #     if(len(chat_history))<1:
    #         # print("entr贸 aca谩")
    #         partial_words += chunk_message.content
    #         chat_history.append([message,chunk_message.content])
    #     else:
    #         # print("antes", chat_history)
    #         if(len(chunk_message.content)!=0):
    #             if(len(chunk_message.content)==2):
    #                 partial_words += chunk_message.content
    #                 chat_history.append([message,chunk_message.content])
    #             else:
    #                 partial_words += chunk_message.content
    #                 chat_history[-1] =([message,partial_words])
    #     yield "",chat_history


with gr.Blocks() as demo:
    gr.Markdown("""
    <center>
    <h1>
    Uso de AI para un chatbot.
    </h1>
    <img src='data:image/jpg;base64,{}' width=200px>
    <h3>
    Con este espacio podr谩s hablar en formato conversaci贸n con el personaje famoso que quieras, puede ser Albert Einstein, Marie Curie o el/la que quieras!
    </h3>
    </center>
    """.format(encoded_image))
    with gr.Row():
        person1 = gr.Textbox(label="Escrib铆 el nombre del perosnaje famoso:")
        person2 = gr.Textbox(label="Escrib铆 el nombre del perosnaje famoso:")

    with gr.Row():
        chatbot = gr.Chatbot( height=550) #just to fit the notebook
    with gr.Row():
        with gr.Row():
            with gr.Column(scale=4):
                msg = gr.Textbox(label="Texto de entrada")
            with gr.Column(scale=1):
                btn = gr.Button("Enviar")
                clear = gr.ClearButton(components=[msg, chatbot], value="Borrar chat")

   


    btn.click(respond, inputs=[person1,person2, chatbot], outputs=[msg, chatbot])
    #msg.submit(respond, inputs=[msg, person,chatbot], outputs=[msg, chatbot]) #Press enter to submit
    clear.click(clear_chat,inputs=[msg, chatbot], outputs=[msg, chatbot])
demo.queue()
demo.launch()