Spaces:
Build error
Build error
File size: 24,009 Bytes
c32ee7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
import argparse
import textwrap
from multiprocessing import Manager, Pool
import pandas as pd
import plotly.express as px
import streamlit as st
from datasets import get_dataset_infos
from pygments import highlight
from pygments.formatters import HtmlFormatter
from pygments.lexers import DjangoLexer
from promptsource.session import _get_state
from promptsource.templates import Template, TemplateCollection
from promptsource.utils import (
get_dataset,
get_dataset_confs,
list_datasets,
removeHyphen,
renameDatasetColumn,
render_features,
)
# add an argument for read-only
# At the moment, streamlit does not handle python script arguments gracefully.
# Thus, for read-only mode, you have to type one of the below two:
# streamlit run promptsource/app.py -- -r
# streamlit run promptsource/app.py -- --read-only
# Check https://github.com/streamlit/streamlit/issues/337 for more information.
parser = argparse.ArgumentParser(description="run app.py with args")
parser.add_argument("-r", "--read-only", action="store_true", help="whether to run it as read-only mode")
args = parser.parse_args()
if args.read_only:
select_options = ["Helicopter view", "Prompted dataset viewer"]
side_bar_title_prefix = "Promptsource (Read only)"
else:
select_options = ["Helicopter view", "Prompted dataset viewer", "Sourcing"]
side_bar_title_prefix = "Promptsource"
#
# Helper functions for datasets library
#
get_dataset = st.cache(allow_output_mutation=True)(get_dataset)
get_dataset_confs = st.cache(get_dataset_confs)
def reset_template_state():
state.template_name = None
state.jinja = None
state.reference = None
#
# Loads session state
#
state = _get_state()
#
# Initial page setup
#
st.set_page_config(page_title="Promptsource", layout="wide")
st.sidebar.markdown(
"<center><a href='https://github.com/bigscience-workshop/promptsource'>💻Github - Promptsource\n\n</a></center>",
unsafe_allow_html=True,
)
mode = st.sidebar.selectbox(
label="Choose a mode",
options=select_options,
index=0,
key="mode_select",
)
st.sidebar.title(f"{side_bar_title_prefix} 🌸 - {mode}")
#
# Adds pygments styles to the page.
#
st.markdown(
"<style>" + HtmlFormatter(style="friendly").get_style_defs(".highlight") + "</style>", unsafe_allow_html=True
)
WIDTH = 80
def show_jinja(t, width=WIDTH):
wrap = textwrap.fill(t, width=width, replace_whitespace=False)
out = highlight(wrap, DjangoLexer(), HtmlFormatter())
st.write(out, unsafe_allow_html=True)
def show_text(t, width=WIDTH, with_markdown=False):
wrap = [textwrap.fill(subt, width=width, replace_whitespace=False) for subt in t.split("\n")]
wrap = "\n".join(wrap)
if with_markdown:
st.write(wrap, unsafe_allow_html=True)
else:
st.text(wrap)
#
# Loads template data
#
try:
template_collection = TemplateCollection()
except FileNotFoundError:
st.error(
"Unable to find the prompt folder!\n\n"
"We expect the folder to be in the working directory. "
"You might need to restart the app in the root directory of the repo."
)
st.stop()
if mode == "Helicopter view":
st.title("High level metrics")
st.write(
"If you want to contribute, please refer to the instructions in "
+ "[Contributing](https://github.com/bigscience-workshop/promptsource/blob/main/CONTRIBUTING.md)."
)
#
# Global metrics
#
counts = template_collection.get_templates_count()
nb_prompted_datasets = len(counts)
st.write(f"## Number of *prompted datasets*: `{nb_prompted_datasets}`")
nb_prompts = sum(counts.values())
st.write(f"## Number of *prompts*: `{nb_prompts}`")
#
# Metrics per dataset/subset
#
# Download dataset infos (multiprocessing download)
manager = Manager()
all_infos = manager.dict()
all_datasets = list(set([t[0] for t in template_collection.keys]))
def get_infos(d_name):
all_infos[d_name] = get_dataset_infos(d_name)
pool = Pool(processes=len(all_datasets))
pool.map(get_infos, all_datasets)
pool.close()
pool.join()
results = []
for (dataset_name, subset_name) in template_collection.keys:
# Collect split sizes (train, validation and test)
if dataset_name not in all_infos:
infos = get_dataset_infos(dataset_name)
all_infos[dataset_name] = infos
else:
infos = all_infos[dataset_name]
if infos:
if subset_name is None:
subset_infos = infos[list(infos.keys())[0]]
else:
subset_infos = infos[subset_name]
split_sizes = {k: v.num_examples for k, v in subset_infos.splits.items()}
else:
# Zaid/coqa_expanded and Zaid/quac_expanded don't have dataset_infos.json
# so infos is an empty dic, and `infos[list(infos.keys())[0]]` raises an error
# For simplicity, just filling `split_sizes` with nothing, so the displayed split sizes will be 0.
split_sizes = {}
# Collect template counts, original task counts and names
dataset_templates = template_collection.get_dataset(dataset_name, subset_name)
results.append(
{
"Dataset name": dataset_name,
"Subset name": "∅" if subset_name is None else subset_name,
"Train size": split_sizes["train"] if "train" in split_sizes else 0,
"Validation size": split_sizes["validation"] if "validation" in split_sizes else 0,
"Test size": split_sizes["test"] if "test" in split_sizes else 0,
"Number of prompts": len(dataset_templates),
"Number of original task prompts": sum(
[bool(t.metadata.original_task) for t in dataset_templates.templates.values()]
),
"Prompt names": [t.name for t in dataset_templates.templates.values()],
}
)
results_df = pd.DataFrame(results)
results_df.sort_values(["Number of prompts"], inplace=True, ascending=False)
results_df.reset_index(drop=True, inplace=True)
nb_training_instances = results_df["Train size"].sum()
st.write(f"## Number of *training instances*: `{nb_training_instances}`")
plot_df = results_df[["Dataset name", "Subset name", "Train size", "Number of prompts"]].copy()
plot_df["Name"] = plot_df["Dataset name"] + " - " + plot_df["Subset name"]
plot_df.sort_values(["Train size"], inplace=True, ascending=False)
fig = px.bar(
plot_df,
x="Name",
y="Train size",
hover_data=["Dataset name", "Subset name", "Number of prompts"],
log_y=True,
title="Number of training instances per data(sub)set - y-axis is in logscale",
)
fig.update_xaxes(visible=False, showticklabels=False)
st.plotly_chart(fig, use_container_width=True)
st.write(
f"- Top 3 training subsets account for `{100*plot_df[:3]['Train size'].sum()/nb_training_instances:.2f}%` of the training instances."
)
biggest_training_subset = plot_df.iloc[0]
st.write(
f"- Biggest training subset is *{biggest_training_subset['Name']}* with `{biggest_training_subset['Train size']}` instances"
)
smallest_training_subset = plot_df[plot_df["Train size"] > 0].iloc[-1]
st.write(
f"- Smallest training subset is *{smallest_training_subset['Name']}* with `{smallest_training_subset['Train size']}` instances"
)
st.markdown("***")
st.write("Details per dataset")
st.table(results_df)
else:
# Combining mode `Prompted dataset viewer` and `Sourcing` since the
# backbone of the interfaces is the same
assert mode in ["Prompted dataset viewer", "Sourcing"], ValueError(
f"`mode` ({mode}) should be in `[Helicopter view, Prompted dataset viewer, Sourcing]`"
)
#
# Loads dataset information
#
dataset_list = list_datasets(
template_collection,
state,
)
ag_news_index = dataset_list.index("ag_news")
#
# Select a dataset - starts with ag_news
#
dataset_key = st.sidebar.selectbox(
"Dataset",
dataset_list,
key="dataset_select",
index=ag_news_index,
help="Select the dataset to work on.",
)
#
# If a particular dataset is selected, loads dataset and template information
#
if dataset_key is not None:
#
# Check for subconfigurations (i.e. subsets)
#
configs = get_dataset_confs(dataset_key)
conf_option = None
if len(configs) > 0:
conf_option = st.sidebar.selectbox("Subset", configs, index=0, format_func=lambda a: a.name)
dataset = get_dataset(dataset_key, str(conf_option.name) if conf_option else None)
splits = list(dataset.keys())
index = 0
if "train" in splits:
index = splits.index("train")
split = st.sidebar.selectbox("Split", splits, key="split_select", index=index)
dataset = dataset[split]
dataset = renameDatasetColumn(dataset)
dataset_templates = template_collection.get_dataset(dataset_key, conf_option.name if conf_option else None)
template_list = dataset_templates.all_template_names
num_templates = len(template_list)
st.sidebar.write(
"No of prompts created for "
+ f"`{dataset_key + (('/' + conf_option.name) if conf_option else '')}`"
+ f": **{str(num_templates)}**"
)
if mode == "Prompted dataset viewer":
if num_templates > 0:
template_name = st.sidebar.selectbox(
"Prompt name",
template_list,
key="template_select",
index=0,
help="Select the prompt to visualize.",
)
step = 50
example_index = st.sidebar.number_input(
f"Select the example index (Size = {len(dataset)})",
min_value=0,
max_value=len(dataset) - step,
value=0,
step=step,
key="example_index_number_input",
help="Offset = 50.",
)
else: # mode = Sourcing
st.sidebar.subheader("Select Example")
example_index = st.sidebar.slider("Select the example index", 0, len(dataset) - 1)
example = dataset[example_index]
example = removeHyphen(example)
st.sidebar.write(example)
st.sidebar.subheader("Dataset Schema")
rendered_features = render_features(dataset.features)
st.sidebar.write(rendered_features)
#
# Display dataset information
#
st.header("Dataset: " + dataset_key + " " + (("/ " + conf_option.name) if conf_option else ""))
st.markdown(
"*Homepage*: "
+ dataset.info.homepage
+ "\n\n*Dataset*: https://github.com/huggingface/datasets/blob/master/datasets/%s/%s.py"
% (dataset_key, dataset_key)
)
md = """
%s
""" % (
dataset.info.description.replace("\\", "") if dataset_key else ""
)
st.markdown(md)
#
# Body of the app: display prompted examples in mode `Prompted dataset viewer`
# or text boxes to create new prompts in mode `Sourcing`
#
if mode == "Prompted dataset viewer":
#
# Display template information
#
if num_templates > 0:
template = dataset_templates[template_name]
st.subheader("Prompt")
st.markdown("##### Name")
st.text(template.name)
st.markdown("##### Reference")
st.text(template.reference)
st.markdown("##### Original Task? ")
st.text(template.metadata.original_task)
st.markdown("##### Choices in template? ")
st.text(template.metadata.choices_in_prompt)
st.markdown("##### Metrics")
st.text(", ".join(template.metadata.metrics) if template.metadata.metrics else None)
st.markdown("##### Answer Choices")
if template.get_answer_choices_expr() is not None:
show_jinja(template.get_answer_choices_expr())
else:
st.text(None)
st.markdown("##### Jinja template")
splitted_template = template.jinja.split("|||")
st.markdown("###### Input template")
show_jinja(splitted_template[0].strip())
if len(splitted_template) > 1:
st.markdown("###### Target template")
show_jinja(splitted_template[1].strip())
st.markdown("***")
#
# Display a couple (steps) examples
#
for ex_idx in range(example_index, example_index + step):
if ex_idx >= len(dataset):
continue
example = dataset[ex_idx]
example = removeHyphen(example)
col1, _, col2 = st.beta_columns([12, 1, 12])
with col1:
st.write(example)
if num_templates > 0:
with col2:
prompt = template.apply(example, highlight_variables=False)
if prompt == [""]:
st.write("∅∅∅ *Blank result*")
else:
st.write("Input")
show_text(prompt[0])
if len(prompt) > 1:
st.write("Target")
show_text(prompt[1])
st.markdown("***")
else: # mode = Sourcing
st.markdown("## Prompt Creator")
#
# Create a new template or select an existing one
#
col1a, col1b, _, col2 = st.beta_columns([9, 9, 1, 6])
# current_templates_key and state.templates_key are keys for the templates object
current_templates_key = (dataset_key, conf_option.name if conf_option else None)
# Resets state if there has been a change in templates_key
if state.templates_key != current_templates_key:
state.templates_key = current_templates_key
reset_template_state()
with col1a, st.form("new_template_form"):
new_template_name = st.text_input(
"Create a New Prompt",
key="new_template",
value="",
help="Enter name and hit enter to create a new prompt.",
)
new_template_submitted = st.form_submit_button("Create")
if new_template_submitted:
if new_template_name in dataset_templates.all_template_names:
st.error(
f"A prompt with the name {new_template_name} already exists "
f"for dataset {state.templates_key}."
)
elif new_template_name == "":
st.error("Need to provide a prompt name.")
else:
template = Template(new_template_name, "", "")
dataset_templates.add_template(template)
reset_template_state()
state.template_name = new_template_name
else:
state.new_template_name = None
with col1b, st.beta_expander("or Select Prompt", expanded=True):
dataset_templates = template_collection.get_dataset(*state.templates_key)
template_list = dataset_templates.all_template_names
if state.template_name:
index = template_list.index(state.template_name)
else:
index = 0
state.template_name = st.selectbox(
"", template_list, key="template_select", index=index, help="Select the prompt to work on."
)
if st.button("Delete Prompt", key="delete_prompt"):
dataset_templates.remove_template(state.template_name)
reset_template_state()
variety_guideline = """
:heavy_exclamation_mark::question:Creating a diverse set of prompts whose differences go beyond surface wordings (i.e. marginally changing 2 or 3 words) is highly encouraged.
Ultimately, the hope is that exposing the model to such a diversity will have a non-trivial impact on the model's robustness to the prompt formulation.
\r**To get various prompts, you can try moving the cursor along theses axes**:
\n- **Interrogative vs affirmative form**: Ask a question about an attribute of the inputs or tell the model to decide something about the input.
\n- **Task description localization**: where is the task description blended with the inputs? In the beginning, in the middle, at the end?
\n- **Implicit situation or contextualization**: how explicit is the query? For instance, *Given this review, would you buy this product?* is an indirect way to ask whether the review is positive.
"""
col1, _, _ = st.beta_columns([18, 1, 6])
with col1:
if state.template_name is not None:
show_text(variety_guideline, with_markdown=True)
#
# Edit the created or selected template
#
col1, _, col2 = st.beta_columns([18, 1, 6])
with col1:
if state.template_name is not None:
template = dataset_templates[state.template_name]
#
# If template is selected, displays template editor
#
with st.form("edit_template_form"):
updated_template_name = st.text_input("Name", value=template.name)
state.reference = st.text_input(
"Prompt Reference",
help="Short description of the prompt and/or paper reference for the prompt.",
value=template.reference,
)
# Metadata
state.metadata = template.metadata
state.metadata.original_task = st.checkbox(
"Original Task?",
value=template.metadata.original_task,
help="Prompt asks model to perform the original task designed for this dataset.",
)
state.metadata.choices_in_prompt = st.checkbox(
"Choices in Template?",
value=template.metadata.choices_in_prompt,
help="Prompt explicitly lists choices in the template for the output.",
)
# Metrics from here:
# https://github.com/google-research/text-to-text-transfer-transformer/blob/4b580f23968c2139be7fb1cd53b22c7a7f686cdf/t5/evaluation/metrics.py
metrics_choices = [
"BLEU",
"ROUGE",
"Squad",
"Trivia QA",
"Accuracy",
"Pearson Correlation",
"Spearman Correlation",
"MultiRC",
"AUC",
"COQA F1",
"Edit Distance",
]
# Add mean reciprocal rank
metrics_choices.append("Mean Reciprocal Rank")
# Add generic other
metrics_choices.append("Other")
# Sort alphabetically
metrics_choices = sorted(metrics_choices)
state.metadata.metrics = st.multiselect(
"Metrics",
metrics_choices,
default=template.metadata.metrics,
help="Select all metrics that are commonly used (or should "
"be used if a new task) to evaluate this prompt.",
)
# Answer choices
if template.get_answer_choices_expr() is not None:
answer_choices = template.get_answer_choices_expr()
else:
answer_choices = ""
state.answer_choices = st.text_input(
"Answer Choices",
value=answer_choices,
help="A Jinja expression for computing answer choices. "
"Separate choices with a triple bar (|||).",
)
# Jinja
state.jinja = st.text_area("Template", height=40, value=template.jinja)
# Submit form
if st.form_submit_button("Save"):
if (
updated_template_name in dataset_templates.all_template_names
and updated_template_name != state.template_name
):
st.error(
f"A prompt with the name {updated_template_name} already exists "
f"for dataset {state.templates_key}."
)
elif updated_template_name == "":
st.error("Need to provide a prompt name.")
else:
# Parses state.answer_choices
if state.answer_choices == "":
updated_answer_choices = None
else:
updated_answer_choices = state.answer_choices
dataset_templates.update_template(
state.template_name,
updated_template_name,
state.jinja,
state.reference,
state.metadata,
updated_answer_choices,
)
# Update the state as well
state.template_name = updated_template_name
#
# Displays template output on current example if a template is selected
# (in second column)
#
with col2:
if state.template_name is not None:
st.empty()
template = dataset_templates[state.template_name]
prompt = template.apply(example)
if prompt == [""]:
st.write("∅∅∅ *Blank result*")
else:
st.write("Input")
show_text(prompt[0], width=40)
if len(prompt) > 1:
st.write("Target")
show_text(prompt[1], width=40)
#
# Must sync state at end
#
state.sync()
|