File size: 24,009 Bytes
c32ee7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
import argparse
import textwrap
from multiprocessing import Manager, Pool

import pandas as pd
import plotly.express as px
import streamlit as st
from datasets import get_dataset_infos
from pygments import highlight
from pygments.formatters import HtmlFormatter
from pygments.lexers import DjangoLexer

from promptsource.session import _get_state
from promptsource.templates import Template, TemplateCollection
from promptsource.utils import (
    get_dataset,
    get_dataset_confs,
    list_datasets,
    removeHyphen,
    renameDatasetColumn,
    render_features,
)


# add an argument for read-only
# At the moment, streamlit does not handle python script arguments gracefully.
# Thus, for read-only mode, you have to type one of the below two:
# streamlit run promptsource/app.py -- -r
# streamlit run promptsource/app.py -- --read-only
# Check https://github.com/streamlit/streamlit/issues/337 for more information.
parser = argparse.ArgumentParser(description="run app.py with args")
parser.add_argument("-r", "--read-only", action="store_true", help="whether to run it as read-only mode")

args = parser.parse_args()
if args.read_only:
    select_options = ["Helicopter view", "Prompted dataset viewer"]
    side_bar_title_prefix = "Promptsource (Read only)"
else:
    select_options = ["Helicopter view", "Prompted dataset viewer", "Sourcing"]
    side_bar_title_prefix = "Promptsource"

#
# Helper functions for datasets library
#
get_dataset = st.cache(allow_output_mutation=True)(get_dataset)
get_dataset_confs = st.cache(get_dataset_confs)


def reset_template_state():
    state.template_name = None
    state.jinja = None
    state.reference = None


#
# Loads session state
#
state = _get_state()

#
# Initial page setup
#
st.set_page_config(page_title="Promptsource", layout="wide")
st.sidebar.markdown(
    "<center><a href='https://github.com/bigscience-workshop/promptsource'>💻Github - Promptsource\n\n</a></center>",
    unsafe_allow_html=True,
)
mode = st.sidebar.selectbox(
    label="Choose a mode",
    options=select_options,
    index=0,
    key="mode_select",
)
st.sidebar.title(f"{side_bar_title_prefix} 🌸 - {mode}")

#
# Adds pygments styles to the page.
#
st.markdown(
    "<style>" + HtmlFormatter(style="friendly").get_style_defs(".highlight") + "</style>", unsafe_allow_html=True
)

WIDTH = 80


def show_jinja(t, width=WIDTH):
    wrap = textwrap.fill(t, width=width, replace_whitespace=False)
    out = highlight(wrap, DjangoLexer(), HtmlFormatter())
    st.write(out, unsafe_allow_html=True)


def show_text(t, width=WIDTH, with_markdown=False):
    wrap = [textwrap.fill(subt, width=width, replace_whitespace=False) for subt in t.split("\n")]
    wrap = "\n".join(wrap)
    if with_markdown:
        st.write(wrap, unsafe_allow_html=True)
    else:
        st.text(wrap)


#
# Loads template data
#
try:
    template_collection = TemplateCollection()
except FileNotFoundError:
    st.error(
        "Unable to find the prompt folder!\n\n"
        "We expect the folder to be in the working directory. "
        "You might need to restart the app in the root directory of the repo."
    )
    st.stop()


if mode == "Helicopter view":
    st.title("High level metrics")
    st.write(
        "If you want to contribute, please refer to the instructions in "
        + "[Contributing](https://github.com/bigscience-workshop/promptsource/blob/main/CONTRIBUTING.md)."
    )

    #
    # Global metrics
    #
    counts = template_collection.get_templates_count()
    nb_prompted_datasets = len(counts)
    st.write(f"## Number of *prompted datasets*: `{nb_prompted_datasets}`")
    nb_prompts = sum(counts.values())
    st.write(f"## Number of *prompts*: `{nb_prompts}`")

    #
    # Metrics per dataset/subset
    #
    # Download dataset infos (multiprocessing download)
    manager = Manager()
    all_infos = manager.dict()
    all_datasets = list(set([t[0] for t in template_collection.keys]))

    def get_infos(d_name):
        all_infos[d_name] = get_dataset_infos(d_name)

    pool = Pool(processes=len(all_datasets))
    pool.map(get_infos, all_datasets)
    pool.close()
    pool.join()

    results = []
    for (dataset_name, subset_name) in template_collection.keys:
        # Collect split sizes (train, validation and test)
        if dataset_name not in all_infos:
            infos = get_dataset_infos(dataset_name)
            all_infos[dataset_name] = infos
        else:
            infos = all_infos[dataset_name]
        if infos:
            if subset_name is None:
                subset_infos = infos[list(infos.keys())[0]]
            else:
                subset_infos = infos[subset_name]

            split_sizes = {k: v.num_examples for k, v in subset_infos.splits.items()}
        else:
            # Zaid/coqa_expanded and Zaid/quac_expanded don't have dataset_infos.json
            # so infos is an empty dic, and `infos[list(infos.keys())[0]]` raises an error
            # For simplicity, just filling `split_sizes` with nothing, so the displayed split sizes will be 0.
            split_sizes = {}

        # Collect template counts, original task counts and names
        dataset_templates = template_collection.get_dataset(dataset_name, subset_name)
        results.append(
            {
                "Dataset name": dataset_name,
                "Subset name": "∅" if subset_name is None else subset_name,
                "Train size": split_sizes["train"] if "train" in split_sizes else 0,
                "Validation size": split_sizes["validation"] if "validation" in split_sizes else 0,
                "Test size": split_sizes["test"] if "test" in split_sizes else 0,
                "Number of prompts": len(dataset_templates),
                "Number of original task prompts": sum(
                    [bool(t.metadata.original_task) for t in dataset_templates.templates.values()]
                ),
                "Prompt names": [t.name for t in dataset_templates.templates.values()],
            }
        )
    results_df = pd.DataFrame(results)
    results_df.sort_values(["Number of prompts"], inplace=True, ascending=False)
    results_df.reset_index(drop=True, inplace=True)

    nb_training_instances = results_df["Train size"].sum()
    st.write(f"## Number of *training instances*: `{nb_training_instances}`")

    plot_df = results_df[["Dataset name", "Subset name", "Train size", "Number of prompts"]].copy()
    plot_df["Name"] = plot_df["Dataset name"] + " - " + plot_df["Subset name"]
    plot_df.sort_values(["Train size"], inplace=True, ascending=False)
    fig = px.bar(
        plot_df,
        x="Name",
        y="Train size",
        hover_data=["Dataset name", "Subset name", "Number of prompts"],
        log_y=True,
        title="Number of training instances per data(sub)set - y-axis is in logscale",
    )
    fig.update_xaxes(visible=False, showticklabels=False)
    st.plotly_chart(fig, use_container_width=True)
    st.write(
        f"- Top 3 training subsets account for `{100*plot_df[:3]['Train size'].sum()/nb_training_instances:.2f}%` of the training instances."
    )
    biggest_training_subset = plot_df.iloc[0]
    st.write(
        f"- Biggest training subset is *{biggest_training_subset['Name']}* with `{biggest_training_subset['Train size']}` instances"
    )
    smallest_training_subset = plot_df[plot_df["Train size"] > 0].iloc[-1]
    st.write(
        f"- Smallest training subset is *{smallest_training_subset['Name']}* with `{smallest_training_subset['Train size']}` instances"
    )

    st.markdown("***")
    st.write("Details per dataset")
    st.table(results_df)

else:
    # Combining mode `Prompted dataset viewer` and `Sourcing` since the
    # backbone of the interfaces is the same
    assert mode in ["Prompted dataset viewer", "Sourcing"], ValueError(
        f"`mode` ({mode}) should be in `[Helicopter view, Prompted dataset viewer, Sourcing]`"
    )

    #
    # Loads dataset information
    #

    dataset_list = list_datasets(
        template_collection,
        state,
    )
    ag_news_index = dataset_list.index("ag_news")

    #
    # Select a dataset - starts with ag_news
    #
    dataset_key = st.sidebar.selectbox(
        "Dataset",
        dataset_list,
        key="dataset_select",
        index=ag_news_index,
        help="Select the dataset to work on.",
    )

    #
    # If a particular dataset is selected, loads dataset and template information
    #
    if dataset_key is not None:

        #
        # Check for subconfigurations (i.e. subsets)
        #
        configs = get_dataset_confs(dataset_key)
        conf_option = None
        if len(configs) > 0:
            conf_option = st.sidebar.selectbox("Subset", configs, index=0, format_func=lambda a: a.name)

        dataset = get_dataset(dataset_key, str(conf_option.name) if conf_option else None)
        splits = list(dataset.keys())
        index = 0
        if "train" in splits:
            index = splits.index("train")
        split = st.sidebar.selectbox("Split", splits, key="split_select", index=index)
        dataset = dataset[split]
        dataset = renameDatasetColumn(dataset)

        dataset_templates = template_collection.get_dataset(dataset_key, conf_option.name if conf_option else None)

        template_list = dataset_templates.all_template_names
        num_templates = len(template_list)
        st.sidebar.write(
            "No of prompts created for "
            + f"`{dataset_key + (('/' + conf_option.name) if conf_option else '')}`"
            + f": **{str(num_templates)}**"
        )

        if mode == "Prompted dataset viewer":
            if num_templates > 0:
                template_name = st.sidebar.selectbox(
                    "Prompt name",
                    template_list,
                    key="template_select",
                    index=0,
                    help="Select the prompt to visualize.",
                )

            step = 50
            example_index = st.sidebar.number_input(
                f"Select the example index (Size = {len(dataset)})",
                min_value=0,
                max_value=len(dataset) - step,
                value=0,
                step=step,
                key="example_index_number_input",
                help="Offset = 50.",
            )
        else:  # mode = Sourcing
            st.sidebar.subheader("Select Example")
            example_index = st.sidebar.slider("Select the example index", 0, len(dataset) - 1)

            example = dataset[example_index]
            example = removeHyphen(example)

            st.sidebar.write(example)

        st.sidebar.subheader("Dataset Schema")
        rendered_features = render_features(dataset.features)
        st.sidebar.write(rendered_features)

        #
        # Display dataset information
        #
        st.header("Dataset: " + dataset_key + " " + (("/ " + conf_option.name) if conf_option else ""))

        st.markdown(
            "*Homepage*: "
            + dataset.info.homepage
            + "\n\n*Dataset*: https://github.com/huggingface/datasets/blob/master/datasets/%s/%s.py"
            % (dataset_key, dataset_key)
        )

        md = """
        %s
        """ % (
            dataset.info.description.replace("\\", "") if dataset_key else ""
        )
        st.markdown(md)

        #
        # Body of the app: display prompted examples in mode `Prompted dataset viewer`
        # or text boxes to create new prompts in mode `Sourcing`
        #
        if mode == "Prompted dataset viewer":
            #
            # Display template information
            #
            if num_templates > 0:
                template = dataset_templates[template_name]
                st.subheader("Prompt")
                st.markdown("##### Name")
                st.text(template.name)
                st.markdown("##### Reference")
                st.text(template.reference)
                st.markdown("##### Original Task? ")
                st.text(template.metadata.original_task)
                st.markdown("##### Choices in template? ")
                st.text(template.metadata.choices_in_prompt)
                st.markdown("##### Metrics")
                st.text(", ".join(template.metadata.metrics) if template.metadata.metrics else None)
                st.markdown("##### Answer Choices")
                if template.get_answer_choices_expr() is not None:
                    show_jinja(template.get_answer_choices_expr())
                else:
                    st.text(None)
                st.markdown("##### Jinja template")
                splitted_template = template.jinja.split("|||")
                st.markdown("###### Input template")
                show_jinja(splitted_template[0].strip())
                if len(splitted_template) > 1:
                    st.markdown("###### Target template")
                    show_jinja(splitted_template[1].strip())
                st.markdown("***")

            #
            # Display a couple (steps) examples
            #
            for ex_idx in range(example_index, example_index + step):
                if ex_idx >= len(dataset):
                    continue
                example = dataset[ex_idx]
                example = removeHyphen(example)
                col1, _, col2 = st.beta_columns([12, 1, 12])
                with col1:
                    st.write(example)
                if num_templates > 0:
                    with col2:
                        prompt = template.apply(example, highlight_variables=False)
                        if prompt == [""]:
                            st.write("∅∅∅ *Blank result*")
                        else:
                            st.write("Input")
                            show_text(prompt[0])
                            if len(prompt) > 1:
                                st.write("Target")
                                show_text(prompt[1])
                st.markdown("***")
        else:  # mode = Sourcing
            st.markdown("## Prompt Creator")

            #
            # Create a new template or select an existing one
            #
            col1a, col1b, _, col2 = st.beta_columns([9, 9, 1, 6])

            # current_templates_key and state.templates_key are keys for the templates object
            current_templates_key = (dataset_key, conf_option.name if conf_option else None)

            # Resets state if there has been a change in templates_key
            if state.templates_key != current_templates_key:
                state.templates_key = current_templates_key
                reset_template_state()

            with col1a, st.form("new_template_form"):
                new_template_name = st.text_input(
                    "Create a New Prompt",
                    key="new_template",
                    value="",
                    help="Enter name and hit enter to create a new prompt.",
                )
                new_template_submitted = st.form_submit_button("Create")
                if new_template_submitted:
                    if new_template_name in dataset_templates.all_template_names:
                        st.error(
                            f"A prompt with the name {new_template_name} already exists "
                            f"for dataset {state.templates_key}."
                        )
                    elif new_template_name == "":
                        st.error("Need to provide a prompt name.")
                    else:
                        template = Template(new_template_name, "", "")
                        dataset_templates.add_template(template)
                        reset_template_state()
                        state.template_name = new_template_name
                else:
                    state.new_template_name = None

            with col1b, st.beta_expander("or Select Prompt", expanded=True):
                dataset_templates = template_collection.get_dataset(*state.templates_key)
                template_list = dataset_templates.all_template_names
                if state.template_name:
                    index = template_list.index(state.template_name)
                else:
                    index = 0
                state.template_name = st.selectbox(
                    "", template_list, key="template_select", index=index, help="Select the prompt to work on."
                )

                if st.button("Delete Prompt", key="delete_prompt"):
                    dataset_templates.remove_template(state.template_name)
                    reset_template_state()

            variety_guideline = """
            :heavy_exclamation_mark::question:Creating a diverse set of prompts whose differences go beyond surface wordings (i.e. marginally changing 2 or 3 words) is highly encouraged.
            Ultimately, the hope is that exposing the model to such a diversity will have a non-trivial impact on the model's robustness to the prompt formulation.
            \r**To get various prompts, you can try moving the cursor along theses axes**:
            \n- **Interrogative vs affirmative form**: Ask a question about an attribute of the inputs or tell the model to decide something about the input.
            \n- **Task description localization**: where is the task description blended with the inputs? In the beginning, in the middle, at the end?
            \n- **Implicit situation or contextualization**: how explicit is the query? For instance, *Given this review, would you buy this product?* is an indirect way to ask whether the review is positive.
            """

            col1, _, _ = st.beta_columns([18, 1, 6])
            with col1:
                if state.template_name is not None:
                    show_text(variety_guideline, with_markdown=True)

            #
            # Edit the created or selected template
            #
            col1, _, col2 = st.beta_columns([18, 1, 6])
            with col1:
                if state.template_name is not None:
                    template = dataset_templates[state.template_name]
                    #
                    # If template is selected, displays template editor
                    #
                    with st.form("edit_template_form"):
                        updated_template_name = st.text_input("Name", value=template.name)
                        state.reference = st.text_input(
                            "Prompt Reference",
                            help="Short description of the prompt and/or paper reference for the prompt.",
                            value=template.reference,
                        )

                        # Metadata
                        state.metadata = template.metadata
                        state.metadata.original_task = st.checkbox(
                            "Original Task?",
                            value=template.metadata.original_task,
                            help="Prompt asks model to perform the original task designed for this dataset.",
                        )
                        state.metadata.choices_in_prompt = st.checkbox(
                            "Choices in Template?",
                            value=template.metadata.choices_in_prompt,
                            help="Prompt explicitly lists choices in the template for the output.",
                        )

                        # Metrics from here:
                        # https://github.com/google-research/text-to-text-transfer-transformer/blob/4b580f23968c2139be7fb1cd53b22c7a7f686cdf/t5/evaluation/metrics.py
                        metrics_choices = [
                            "BLEU",
                            "ROUGE",
                            "Squad",
                            "Trivia QA",
                            "Accuracy",
                            "Pearson Correlation",
                            "Spearman Correlation",
                            "MultiRC",
                            "AUC",
                            "COQA F1",
                            "Edit Distance",
                        ]
                        # Add mean reciprocal rank
                        metrics_choices.append("Mean Reciprocal Rank")
                        # Add generic other
                        metrics_choices.append("Other")
                        # Sort alphabetically
                        metrics_choices = sorted(metrics_choices)
                        state.metadata.metrics = st.multiselect(
                            "Metrics",
                            metrics_choices,
                            default=template.metadata.metrics,
                            help="Select all metrics that are commonly used (or should "
                            "be used if a new task) to evaluate this prompt.",
                        )

                        # Answer choices
                        if template.get_answer_choices_expr() is not None:
                            answer_choices = template.get_answer_choices_expr()
                        else:
                            answer_choices = ""
                        state.answer_choices = st.text_input(
                            "Answer Choices",
                            value=answer_choices,
                            help="A Jinja expression for computing answer choices. "
                            "Separate choices with a triple bar (|||).",
                        )

                        # Jinja
                        state.jinja = st.text_area("Template", height=40, value=template.jinja)

                        # Submit form
                        if st.form_submit_button("Save"):
                            if (
                                updated_template_name in dataset_templates.all_template_names
                                and updated_template_name != state.template_name
                            ):
                                st.error(
                                    f"A prompt with the name {updated_template_name} already exists "
                                    f"for dataset {state.templates_key}."
                                )
                            elif updated_template_name == "":
                                st.error("Need to provide a prompt name.")
                            else:
                                # Parses state.answer_choices
                                if state.answer_choices == "":
                                    updated_answer_choices = None
                                else:
                                    updated_answer_choices = state.answer_choices

                                dataset_templates.update_template(
                                    state.template_name,
                                    updated_template_name,
                                    state.jinja,
                                    state.reference,
                                    state.metadata,
                                    updated_answer_choices,
                                )
                                # Update the state as well
                                state.template_name = updated_template_name
            #
            # Displays template output on current example if a template is selected
            # (in second column)
            #
            with col2:
                if state.template_name is not None:
                    st.empty()
                    template = dataset_templates[state.template_name]
                    prompt = template.apply(example)
                    if prompt == [""]:
                        st.write("∅∅∅ *Blank result*")
                    else:
                        st.write("Input")
                        show_text(prompt[0], width=40)
                        if len(prompt) > 1:
                            st.write("Target")
                            show_text(prompt[1], width=40)


#
# Must sync state at end
#
state.sync()