File size: 5,676 Bytes
17191f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import numpy as np
import torch
from torch.utils.data import Dataset
from torchvision.transforms import Compose, Resize, ToTensor
import imageio
from tqdm import tqdm

class pix2pixDataset(Dataset):
    def __init__(self, dataset="maps", data_dir="/projects/ml4science/datasets_pix2pix/", split="train", normalize=True, transforms=None, preload=False, image_size=256, direction="BtoA"):
        self.datadir = os.path.join(data_dir, dataset)
        self.img_name_list_path = os.path.join(data_dir, dataset, split)
        if not os.path.exists(self.datadir):
            print(f'Dataset directory {self.datadir} does not exists')
        
        self.normalize=normalize
        self.image_name_list = os.listdir(self.img_name_list_path)
        self.preload = preload
        self.direction = direction
        if transforms is None:
            self.transforms = Compose([
                ToTensor(), # Convert to torch tensor
                Resize((image_size, image_size), antialias=False), # Resize to 256x256
            ])
        else:
            self.transforms = transforms
        
        if self.preload:
            self.x_list, self.y_list= (), ()
            for name in tqdm(self.image_name_list):
                x, y = self.load_every(name)
                self.x_list = self.x_list + (x,)
                self.y_list = self.y_list + (y,)
            self.x_list = torch.stack(self.x_list, 0)
            self.y_list = torch.stack(self.y_list, 0)
            print(f"{split} dataset preloaded!")
    
    def load_every(self, name):
        img_array = np.asarray(imageio.imread(os.path.join(self.img_name_list_path, name)))
        img_H, img_W = img_array.shape[0], img_array.shape[1]
        if self.normalize:
            img_array = self.normalize_fn(img_array)
        x_img, y_img = img_array[:,:img_W//2, :], img_array[:, img_W//2:, :] 
        x_img, y_img = self.transforms(x_img), self.transforms(y_img) # Apply the resize transform
        return x_img.float(), y_img.float()
    
    def normalize_fn(self, x):
        return (x/255. -0.5)*2
    
    def unnormalize_fn(self, x):
        return ((x/2 + 0.5) * 255).int().clamp(0, 255) #since these are images

    def __getitem__(self, index): # getitem should return x0, x1, y (where y is the class label for class conditional generation)
        class_cond = None
        if self.preload:
            x_img, y_img = self.x_list[index], self.y_list[index]
        else:
            name = self.image_name_list[index]
            x_img, y_img = self.load_every(name)
        # if self.direction == "BtoA":
        #     return x_img, y_img, class_cond 
        # elif self.direction == "AtoB":
        #     return y_img, x_img, class_cond
        batch ={
            "image1":x_img,
            "image2":y_img,
        }
        return batch

    def __len__(self):
        return len(self.image_name_list)

class FishDataset(Dataset):
    def __init__(self, data_dir="/projects/ml4science/FishDiffusion/", split="train", normalize=True, transforms=None, preload=False, image_size=128):
        self.datadir = os.path.join(data_dir)
        self.img_name_list_path = os.path.join(data_dir, split)
        
        if not os.path.exists(self.datadir):
            print(f'Dataset directory {self.datadir} does not exists')
        
        self.normalize=normalize
        self.image_name_list = os.listdir(self.img_name_list_path)
        self.preload = preload

        if transforms is None:
            # self.transforms = Compose([
            #     ToTensor(), # Convert to torch tensor
            #     Resize((image_size, image_size), antialias=False), # Resize to 256x256
            # ])
            self.transforms = Compose([
                ToTensor(), # Convert to torch tensor
            ])
        else:
            self.transforms = transforms
        
        if self.preload:
            self.x_list, self.y_list, self.class_id = (), (), []
            for name in tqdm(self.image_name_list):
                x, y = self.load_every(name)
                cls_id = int(name.split("_")[-1][:-4])
                self.x_list = self.x_list + (x,)
                self.y_list = self.y_list + (y,)
                self.class_id.append(cls_id)
            self.x_list = torch.stack(self.x_list, 0)
            self.y_list = torch.stack(self.y_list, 0)
            self.class_id = torch.tensor(self.class_id)
            print(f"{split} dataset preloaded!")
    
    def load_every(self, name):
        img_array = np.asarray(imageio.imread(os.path.join(self.img_name_list_path, name)))
        img_H, img_W = img_array.shape[0], img_array.shape[1]
        if self.normalize:
            img_array = self.normalize_fn(img_array)
        x_img, y_img = img_array[:,:img_W//2, :], img_array[:, img_W//2:, :] 
        x_img, y_img = self.transforms(x_img), self.transforms(y_img) # Apply the resize transform
        return x_img.float(), y_img.float()
    
    def normalize_fn(self, x):
        return (x/255. -0.5)*2
    
    def unnormalize_fn(self, x):
        return ((x/2 + 0.5) * 255).int().clamp(0, 255) #since these are images

    def __getitem__(self, index): # getitem should return x0, x1, y (where y is the class label for class conditional generation)
        if self.preload:
            x_img, y_img, class_id = self.x_list[index], self.y_list[index], self.class_id[index]
        else:
            name = self.image_name_list[index]
            class_id = torch.tensor(int(name.split("_")[-1][:-4]))
            x_img, y_img = self.load_every(name)
        return x_img, y_img, class_id

    def __len__(self):
        return len(self.image_name_list)