File size: 11,631 Bytes
ae6263a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6226078
 
 
 
 
 
 
 
 
 
ae6263a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6226078
 
 
ae6263a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6226078
ae6263a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import argparse, os, sys, glob
import torch
import pickle
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from einops import rearrange
from torchvision.utils import make_grid

from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler



def load_model_from_config(config, ckpt, verbose=False):
    print(f"Loading model from {ckpt}")
    # pl_sd = torch.load(ckpt, map_location="cpu")
    pl_sd = torch.load(ckpt)#, map_location="cpu")
    sd = pl_sd["state_dict"]
    model = instantiate_from_config(config.model)
    m, u = model.load_state_dict(sd, strict=False)
    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)

    model.cuda()
    model.eval()
    return model

def masking_embed(embedding, levels=1):
    """
    size of embedding - nx1xd, n: number of samples, d - 512
    replacing the last 128*levels from the embedding
    """
    replace_size = 128*levels
    random_noise = torch.randn(embedding.shape[0], embedding.shape[1], replace_size)
    embedding[:, :, -replace_size:] = random_noise
    return embedding


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--prompt",
        type=str,
        nargs="?",
        default="a painting of a virus monster playing guitar",
        help="the prompt to render"
    )

    parser.add_argument(
        "--outdir",
        type=str,
        nargs="?",
        help="dir to write results to",
        default="outputs/txt2img-samples"
    )
    parser.add_argument(
        "--ddim_steps",
        type=int,
        default=200,
        help="number of ddim sampling steps",
    )

    parser.add_argument(
        "--plms",
        action='store_true',
        help="use plms sampling",
    )

    parser.add_argument(
        "--ddim_eta",
        type=float,
        default=1.0,
        help="ddim eta (eta=0.0 corresponds to deterministic sampling",
    )
    parser.add_argument(
        "--n_iter",
        type=int,
        default=1,
        help="sample this often",
    )

    parser.add_argument(
        "--H",
        type=int,
        default=256,
        help="image height, in pixel space",
    )

    parser.add_argument(
        "--W",
        type=int,
        default=256,
        help="image width, in pixel space",
    )

    parser.add_argument(
        "--n_samples",
        type=int,
        default=4,
        help="how many samples to produce for the given prompt",
    )

    parser.add_argument(
        "--output_dir_name",
        type=str,
        default='default_file',
        help="name of folder",
    )

    parser.add_argument(
        "--postfix",
        type=str,
        default='',
        help="name of folder",
    )

    parser.add_argument(
        "--scale",
        type=float,
        # default=5.0,
        default=1.0,
        help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
    )
    opt = parser.parse_args()

    # --scale 1.0 --n_samples 3 --ddim_steps 20

    # # #### CLIP f4
    # config_path = '/globalscratch/mridul/ldm/clip/2023-11-09T15-34-23_CLIP_f4_maxlen77_classname/configs/2023-11-09T15-34-23-project.yaml'
    # ckpt_path = '/globalscratch/mridul/ldm/clip/2023-11-09T15-34-23_CLIP_f4_maxlen77_classname/checkpoints/epoch=000158.ckpt'
    
    # # #### CLIP f8
    # config_path = '/globalscratch/mridul/ldm/clip/2023-11-09T15-30-05_CLIP_f8_maxlen77_classname/configs/2023-11-09T15-30-05-project.yaml'
    # ckpt_path = '/globalscratch/mridul/ldm/clip/2023-11-09T15-30-05_CLIP_f8_maxlen77_classname/checkpoints/epoch=000119.ckpt'

    #### Label Encoding
    # config_path = '/globalscratch/mridul/ldm/test/test_bert/2023-11-13T23-08-55_TEST_f4_ancestral_label_encoding/configs/2023-11-13T23-08-55-project.yaml'
    # ckpt_path = '/globalscratch/mridul/ldm/test/test_bert/2023-11-13T23-08-55_TEST_f4_ancestral_label_encoding/checkpoints/epoch=000119.ckpt'

     #### Label Encoding Leave one out
    # config_path = '/globalscratch/mridul/ldm/level_encoding/leave_out/2023-12-01T01-49-15_HLE_f4_label_encoding_leave_out/configs/2023-12-01T01-49-15-project.yaml'
    # ckpt_path = '/globalscratch/mridul/ldm/level_encoding/leave_out/2023-12-01T01-49-15_HLE_f4_label_encoding_leave_out/checkpoints/epoch=000131.ckpt'

    # ckpt_path = '/globalscratch/mridul/ldm/level_encoding/2023-12-03T09-33-45_HLE_f4_level_encoding_371/checkpoints/epoch=000119.ckpt'
    # config_path = '/globalscratch/mridul/ldm/level_encoding/2023-12-03T09-33-45_HLE_f4_level_encoding_371/configs/2023-12-03T09-33-45-project.yaml'


    # ### scale 1.25 - 137 epoch
    # ckpt_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T21-52-36_HLE_f4_scale1.25/checkpoints/epoch=000119.ckpt'
    # config_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T21-52-36_HLE_f4_scale1.25/configs/2024-01-29T21-52-36-project.yaml'

    ### scale 1.5 - 137 epoch
    # ckpt_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T20-33-03_HLE_f4_scale1.5/checkpoints/epoch=000119.ckpt'
    # config_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T20-33-03_HLE_f4_scale1.5/configs/2024-01-29T20-33-03-project.yaml'


    # ### scale 2 - 137 epoch
    # ckpt_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T21-52-36_HLE_f4_scale2/checkpoints/epoch=000095.ckpt'
    # config_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T21-52-36_HLE_f4_scale2/configs/2024-01-29T21-52-36-project.yaml'

    # ### scale 5 - 137 epoch
    # ckpt_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T20-26-32_HLE_f4_scale5/checkpoints/epoch=000095.ckpt'
    # config_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T20-26-32_HLE_f4_scale5/configs/2024-01-29T20-26-32-project.yaml'

    # ### scale 10 - 137 epoch
    # ckpt_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T20-26-02_HLE_f4_scale10/checkpoints/epoch=000101.ckpt'
    # config_path = '/globalscratch/mridul/ldm/level_encoding/2024-01-29T20-26-02_HLE_f4_scale10/configs/2024-01-29T20-26-02-project.yaml'

    ###### hle 371, 
    ckpt_path = '/globalscratch/mridul/ldm/final_runs_eccv/fishes/2024-03-01T23-15-36_HLE_days3/checkpoints/epoch=000119.ckpt'
    config_path = '/globalscratch/mridul/ldm/final_runs_eccv/fishes/2024-03-01T23-15-36_HLE_days3/configs/2024-03-01T23-15-36-project.yaml'


    label_to_class_mapping = {0: 'Alosa-chrysochloris', 1: 'Carassius-auratus', 2: 'Cyprinus-carpio', 3: 'Esox-americanus', 
    4: 'Gambusia-affinis', 5: 'Lepisosteus-osseus', 6: 'Lepisosteus-platostomus', 7: 'Lepomis-auritus', 8: 'Lepomis-cyanellus', 
    9: 'Lepomis-gibbosus', 10: 'Lepomis-gulosus', 11: 'Lepomis-humilis', 12: 'Lepomis-macrochirus', 13: 'Lepomis-megalotis', 
    14: 'Lepomis-microlophus', 15: 'Morone-chrysops', 16: 'Morone-mississippiensis', 17: 'Notropis-atherinoides', 
    18: 'Notropis-blennius', 19: 'Notropis-boops', 20: 'Notropis-buccatus', 21: 'Notropis-buchanani', 22: 'Notropis-dorsalis', 
    23: 'Notropis-hudsonius', 24: 'Notropis-leuciodus', 25: 'Notropis-nubilus', 26: 'Notropis-percobromus', 
    27: 'Notropis-stramineus', 28: 'Notropis-telescopus', 29: 'Notropis-texanus', 30: 'Notropis-volucellus', 
    31: 'Notropis-wickliffi', 32: 'Noturus-exilis', 33: 'Noturus-flavus', 34: 'Noturus-gyrinus', 35: 'Noturus-miurus', 
    36: 'Noturus-nocturnus', 37: 'Phenacobius-mirabilis'}

    def get_label_from_class(class_name):
        for key, value in label_to_class_mapping.items():
            if value == class_name:
                return key

    config = OmegaConf.load(config_path)  # TODO: Optionally download from same location as ckpt and chnage this logic
    model = load_model_from_config(config, ckpt_path)  # TODO: check path

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = model.to(device)

    if opt.plms:
        sampler = PLMSSampler(model)
    else:
        sampler = DDIMSampler(model)

    os.makedirs(opt.outdir, exist_ok=True)
    outpath = opt.outdir

    prompt = opt.prompt
    all_images = []
    labels = []

    class_to_node = '/fastscratch/mridul/fishes/class_to_ancestral_label.pkl'
    with open(class_to_node, 'rb') as pickle_file:
        class_to_node_dict = pickle.load(pickle_file)

    class_to_node_dict =  {key.lower(): value for key, value in class_to_node_dict.items()}


    sample_path = os.path.join(outpath, opt.output_dir_name)
    os.makedirs(sample_path, exist_ok=True)
    base_count = len(os.listdir(sample_path))

    for class_name, node_representation in tqdm(class_to_node_dict.items()):
        prompt = node_representation
        all_samples=list()
        with torch.no_grad():
            with model.ema_scope():
                uc = None
                # if opt.scale != 1.0:
                #     uc = model.get_learned_conditioning(opt.n_samples * [""])
                for n in trange(opt.n_iter, desc="Sampling"):

                    all_prompts = opt.n_samples * (prompt)
                    all_prompts = [tuple(all_prompts)]
                    print(class_name, prompt)
                    breakpoint()
                    c = model.get_learned_conditioning({'class_to_node': all_prompts})
                    shape = [3, 64, 64]
                    samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
                                                    conditioning=c,
                                                    batch_size=opt.n_samples,
                                                    shape=shape,
                                                    verbose=False,
                                                    unconditional_guidance_scale=opt.scale,
                                                    unconditional_conditioning=uc,
                                                    eta=opt.ddim_eta)

                    x_samples_ddim = model.decode_first_stage(samples_ddim)
                    x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0)

                    all_samples.append(x_samples_ddim)

        ###### to make grid
        # additionally, save as grid
        grid = torch.stack(all_samples, 0)
        grid = rearrange(grid, 'n b c h w -> (n b) c h w')
        grid = make_grid(grid, nrow=opt.n_samples)

        # to image
        grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
        Image.fromarray(grid.astype(np.uint8)).save(os.path.join(sample_path, f'{class_name.replace(" ", "-")}.png'))

    #     # individual images
    #     grid = torch.stack(all_samples, 0)
    #     grid = rearrange(grid, 'n b c h w -> (n b) c h w')

    #     for i in range(opt.n_samples):
    #         sample = grid[i]
    #         img = 255. * rearrange(sample, 'c h w -> h w c').cpu().numpy()
    #         img_arr = img.astype(np.uint8)
    #         class_name = class_name.replace(" ", "-")
    #         all_images.append(img_arr)
    #         labels.append(get_label_from_class(class_name))
    #         Image.fromarray(img_arr).save(f'{sample_path}/{class_name}_{i}.png')

    # all_images = np.array(all_images)
    # labels = np.array(labels)

    # np.savez(sample_path + '.npz', all_images, labels)


    print(f"Your samples are ready and waiting four you here: \n{sample_path} \nEnjoy.")


# python sample_text.py --outdir /home/mridul/sample_images_text --scale 1.0 --n_samples 3 --ddim_steps 200 --ddim_eta 1.0