File size: 5,562 Bytes
02e3b25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#based on https://github.com/CompVis/taming-transformers

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from einops import rearrange

class VectorQuantizer2(nn.Module):
    """
    Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
    avoids costly matrix multiplications and allows for post-hoc remapping of indices.
    """
    # NOTE: due to a bug the beta term was applied to the wrong term. for
    # backwards compatibility we use the buggy version by default, but you can
    # specify legacy=False to fix it.
    def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random",
                 sane_index_shape=False, legacy=True):
        super().__init__()
        self.n_e = n_e
        self.e_dim = e_dim
        self.beta = beta
        self.legacy = legacy

        self.embedding = nn.Embedding(self.n_e, self.e_dim)
        self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)

        self.remap = remap
        if self.remap is not None:
            self.register_buffer("used", torch.tensor(np.load(self.remap)))
            self.re_embed = self.used.shape[0]
            self.unknown_index = unknown_index # "random" or "extra" or integer
            if self.unknown_index == "extra":
                self.unknown_index = self.re_embed
                self.re_embed = self.re_embed+1
            print(f"Remapping {self.n_e} indices to {self.re_embed} indices. "
                  f"Using {self.unknown_index} for unknown indices.")
        else:
            self.re_embed = n_e

        self.sane_index_shape = sane_index_shape

    def remap_to_used(self, inds):
        ishape = inds.shape
        assert len(ishape)>1
        inds = inds.reshape(ishape[0],-1)
        used = self.used.to(inds)
        match = (inds[:,:,None]==used[None,None,...]).long()
        new = match.argmax(-1)
        unknown = match.sum(2)<1
        if self.unknown_index == "random":
            new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device)
        else:
            new[unknown] = self.unknown_index
        return new.reshape(ishape)

    def unmap_to_all(self, inds):
        ishape = inds.shape
        assert len(ishape)>1
        inds = inds.reshape(ishape[0],-1)
        used = self.used.to(inds)
        if self.re_embed > self.used.shape[0]: # extra token
            inds[inds>=self.used.shape[0]] = 0 # simply set to zero
        back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds)
        return back.reshape(ishape)

    def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
        assert temp is None or temp==1.0, "Only for interface compatible with Gumbel"
        assert rescale_logits==False, "Only for interface compatible with Gumbel"
        assert return_logits==False, "Only for interface compatible with Gumbel"
        # reshape z -> (batch, height, width, channel) and flatten
        z = rearrange(z, 'b c h w -> b h w c').contiguous()
        z_flattened = z.view(-1, self.e_dim)
        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z

        d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
            torch.sum(self.embedding.weight**2, dim=1) - 2 * \
            torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n'))

        min_encoding_indices = torch.argmin(d, dim=1)
        z_q = self.embedding(min_encoding_indices).view(z.shape)
        perplexity = None
        min_encodings = None

        # compute loss for embedding
        if not self.legacy:
            loss = self.beta * torch.mean((z_q.detach()-z)**2) + \
                   torch.mean((z_q - z.detach()) ** 2)
        else:
            loss = torch.mean((z_q.detach()-z)**2) + self.beta * \
                   torch.mean((z_q - z.detach()) ** 2)

        # preserve gradients
        z_q = z + (z_q - z).detach()

        # reshape back to match original input shape
        z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()

        if self.remap is not None:
            min_encoding_indices = min_encoding_indices.reshape(z.shape[0],-1) # add batch axis
            min_encoding_indices = self.remap_to_used(min_encoding_indices)
            min_encoding_indices = min_encoding_indices.reshape(-1,1) # flatten

        if self.sane_index_shape:
            min_encoding_indices = min_encoding_indices.reshape(
                z_q.shape[0], z_q.shape[2], z_q.shape[3])

        return z_q, loss, (perplexity, min_encodings, min_encoding_indices)

    def get_codebook_entry(self, indices, shape):
        # shape specifying (batch, height, width, channel)
        if self.remap is not None:
            indices = indices.reshape(shape[0],-1) # add batch axis
            indices = self.unmap_to_all(indices)
            indices = indices.reshape(-1) # flatten again

        # get quantized latent vectors
        z_q = self.embedding(indices)

        if shape is not None:
            z_q = z_q.view(shape)
            # reshape back to match original input shape
            z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return z_q

    def get_codebook_entry_index(self, entry):
        codebook_shape = self.embedding.weight.data.shape

        assert entry.shape[1]==codebook_shape[1]
        distance = torch.norm(self.embedding.weight.data - entry, dim=1)
        
        nearest = torch.argmin(distance)
        nearest_distance = torch.min(distance)

        return nearest, nearest_distance