Spaces:
Runtime error
Runtime error
File size: 16,712 Bytes
0102e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
# Modified from 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker)
import io
import os
import torch
import requests
import tempfile
import contextlib
import numpy as np
import librosa as sf
from typing import Union
from pathlib import Path
from typing import Generator, Union
from abc import ABCMeta, abstractmethod
import torchaudio.compliance.kaldi as Kaldi
from funasr_detach.models.transformer.utils.nets_utils import pad_list
def check_audio_list(audio: list):
audio_dur = 0
for i in range(len(audio)):
seg = audio[i]
assert seg[1] >= seg[0], "modelscope error: Wrong time stamps."
assert isinstance(seg[2], np.ndarray), "modelscope error: Wrong data type."
assert (
int(seg[1] * 16000) - int(seg[0] * 16000) == seg[2].shape[0]
), "modelscope error: audio data in list is inconsistent with time length."
if i > 0:
assert seg[0] >= audio[i - 1][1], "modelscope error: Wrong time stamps."
audio_dur += seg[1] - seg[0]
return audio_dur
# assert audio_dur > 5, 'modelscope error: The effective audio duration is too short.'
def sv_preprocess(inputs: Union[np.ndarray, list]):
output = []
for i in range(len(inputs)):
if isinstance(inputs[i], str):
file_bytes = File.read(inputs[i])
data, fs = sf.load(io.BytesIO(file_bytes), dtype="float32")
if len(data.shape) == 2:
data = data[:, 0]
data = torch.from_numpy(data).unsqueeze(0)
data = data.squeeze(0)
elif isinstance(inputs[i], np.ndarray):
assert (
len(inputs[i].shape) == 1
), "modelscope error: Input array should be [N, T]"
data = inputs[i]
if data.dtype in ["int16", "int32", "int64"]:
data = (data / (1 << 15)).astype("float32")
else:
data = data.astype("float32")
data = torch.from_numpy(data)
else:
raise ValueError(
"modelscope error: The input type is restricted to audio address and nump array."
)
output.append(data)
return output
def sv_chunk(vad_segments: list, fs=16000) -> list:
config = {
"seg_dur": 1.5,
"seg_shift": 0.75,
}
def seg_chunk(seg_data):
seg_st = seg_data[0]
data = seg_data[2]
chunk_len = int(config["seg_dur"] * fs)
chunk_shift = int(config["seg_shift"] * fs)
last_chunk_ed = 0
seg_res = []
for chunk_st in range(0, data.shape[0], chunk_shift):
chunk_ed = min(chunk_st + chunk_len, data.shape[0])
if chunk_ed <= last_chunk_ed:
break
last_chunk_ed = chunk_ed
chunk_st = max(0, chunk_ed - chunk_len)
chunk_data = data[chunk_st:chunk_ed]
if chunk_data.shape[0] < chunk_len:
chunk_data = np.pad(
chunk_data, (0, chunk_len - chunk_data.shape[0]), "constant"
)
seg_res.append([chunk_st / fs + seg_st, chunk_ed / fs + seg_st, chunk_data])
return seg_res
segs = []
for i, s in enumerate(vad_segments):
segs.extend(seg_chunk(s))
return segs
def extract_feature(audio):
features = []
feature_times = []
feature_lengths = []
for au in audio:
feature = Kaldi.fbank(au.unsqueeze(0), num_mel_bins=80)
feature = feature - feature.mean(dim=0, keepdim=True)
features.append(feature)
feature_times.append(au.shape[0])
feature_lengths.append(feature.shape[0])
# padding for batch inference
features_padded = pad_list(features, pad_value=0)
# features = torch.cat(features)
return features_padded, feature_lengths, feature_times
def postprocess(
segments: list, vad_segments: list, labels: np.ndarray, embeddings: np.ndarray
) -> list:
assert len(segments) == len(labels)
labels = correct_labels(labels)
distribute_res = []
for i in range(len(segments)):
distribute_res.append([segments[i][0], segments[i][1], labels[i]])
# merge the same speakers chronologically
distribute_res = merge_seque(distribute_res)
# accquire speaker center
spk_embs = []
for i in range(labels.max() + 1):
spk_emb = embeddings[labels == i].mean(0)
spk_embs.append(spk_emb)
spk_embs = np.stack(spk_embs)
def is_overlapped(t1, t2):
if t1 > t2 + 1e-4:
return True
return False
# distribute the overlap region
for i in range(1, len(distribute_res)):
if is_overlapped(distribute_res[i - 1][1], distribute_res[i][0]):
p = (distribute_res[i][0] + distribute_res[i - 1][1]) / 2
distribute_res[i][0] = p
distribute_res[i - 1][1] = p
# smooth the result
distribute_res = smooth(distribute_res)
return distribute_res
def correct_labels(labels):
labels_id = 0
id2id = {}
new_labels = []
for i in labels:
if i not in id2id:
id2id[i] = labels_id
labels_id += 1
new_labels.append(id2id[i])
return np.array(new_labels)
def merge_seque(distribute_res):
res = [distribute_res[0]]
for i in range(1, len(distribute_res)):
if distribute_res[i][2] != res[-1][2] or distribute_res[i][0] > res[-1][1]:
res.append(distribute_res[i])
else:
res[-1][1] = distribute_res[i][1]
return res
def smooth(res, mindur=1):
# short segments are assigned to nearest speakers.
for i in range(len(res)):
res[i][0] = round(res[i][0], 2)
res[i][1] = round(res[i][1], 2)
if res[i][1] - res[i][0] < mindur:
if i == 0:
res[i][2] = res[i + 1][2]
elif i == len(res) - 1:
res[i][2] = res[i - 1][2]
elif res[i][0] - res[i - 1][1] <= res[i + 1][0] - res[i][1]:
res[i][2] = res[i - 1][2]
else:
res[i][2] = res[i + 1][2]
# merge the speakers
res = merge_seque(res)
return res
def distribute_spk(sentence_list, sd_time_list):
sd_sentence_list = []
for d in sentence_list:
sentence_start = d["start"]
sentence_end = d["end"]
sentence_spk = 0
max_overlap = 0
for sd_time in sd_time_list:
spk_st, spk_ed, spk = sd_time
spk_st = spk_st * 1000
spk_ed = spk_ed * 1000
overlap = max(min(sentence_end, spk_ed) - max(sentence_start, spk_st), 0)
if overlap > max_overlap:
max_overlap = overlap
sentence_spk = spk
d["spk"] = int(sentence_spk)
sd_sentence_list.append(d)
return sd_sentence_list
class Storage(metaclass=ABCMeta):
"""Abstract class of storage.
All backends need to implement two apis: ``read()`` and ``read_text()``.
``read()`` reads the file as a byte stream and ``read_text()`` reads
the file as texts.
"""
@abstractmethod
def read(self, filepath: str):
pass
@abstractmethod
def read_text(self, filepath: str):
pass
@abstractmethod
def write(self, obj: bytes, filepath: Union[str, Path]) -> None:
pass
@abstractmethod
def write_text(
self, obj: str, filepath: Union[str, Path], encoding: str = "utf-8"
) -> None:
pass
class LocalStorage(Storage):
"""Local hard disk storage"""
def read(self, filepath: Union[str, Path]) -> bytes:
"""Read data from a given ``filepath`` with 'rb' mode.
Args:
filepath (str or Path): Path to read data.
Returns:
bytes: Expected bytes object.
"""
with open(filepath, "rb") as f:
content = f.read()
return content
def read_text(self, filepath: Union[str, Path], encoding: str = "utf-8") -> str:
"""Read data from a given ``filepath`` with 'r' mode.
Args:
filepath (str or Path): Path to read data.
encoding (str): The encoding format used to open the ``filepath``.
Default: 'utf-8'.
Returns:
str: Expected text reading from ``filepath``.
"""
with open(filepath, "r", encoding=encoding) as f:
value_buf = f.read()
return value_buf
def write(self, obj: bytes, filepath: Union[str, Path]) -> None:
"""Write data to a given ``filepath`` with 'wb' mode.
Note:
``write`` will create a directory if the directory of ``filepath``
does not exist.
Args:
obj (bytes): Data to be written.
filepath (str or Path): Path to write data.
"""
dirname = os.path.dirname(filepath)
if dirname and not os.path.exists(dirname):
os.makedirs(dirname, exist_ok=True)
with open(filepath, "wb") as f:
f.write(obj)
def write_text(
self, obj: str, filepath: Union[str, Path], encoding: str = "utf-8"
) -> None:
"""Write data to a given ``filepath`` with 'w' mode.
Note:
``write_text`` will create a directory if the directory of
``filepath`` does not exist.
Args:
obj (str): Data to be written.
filepath (str or Path): Path to write data.
encoding (str): The encoding format used to open the ``filepath``.
Default: 'utf-8'.
"""
dirname = os.path.dirname(filepath)
if dirname and not os.path.exists(dirname):
os.makedirs(dirname, exist_ok=True)
with open(filepath, "w", encoding=encoding) as f:
f.write(obj)
@contextlib.contextmanager
def as_local_path(
self, filepath: Union[str, Path]
) -> Generator[Union[str, Path], None, None]:
"""Only for unified API and do nothing."""
yield filepath
class HTTPStorage(Storage):
"""HTTP and HTTPS storage."""
def read(self, url):
# TODO @wenmeng.zwm add progress bar if file is too large
r = requests.get(url)
r.raise_for_status()
return r.content
def read_text(self, url):
r = requests.get(url)
r.raise_for_status()
return r.text
@contextlib.contextmanager
def as_local_path(self, filepath: str) -> Generator[Union[str, Path], None, None]:
"""Download a file from ``filepath``.
``as_local_path`` is decorated by :meth:`contextlib.contextmanager`. It
can be called with ``with`` statement, and when exists from the
``with`` statement, the temporary path will be released.
Args:
filepath (str): Download a file from ``filepath``.
Examples:
>>> storage = HTTPStorage()
>>> # After existing from the ``with`` clause,
>>> # the path will be removed
>>> with storage.get_local_path('http://path/to/file') as path:
... # do something here
"""
try:
f = tempfile.NamedTemporaryFile(delete=False)
f.write(self.read(filepath))
f.close()
yield f.name
finally:
os.remove(f.name)
def write(self, obj: bytes, url: Union[str, Path]) -> None:
raise NotImplementedError("write is not supported by HTTP Storage")
def write_text(
self, obj: str, url: Union[str, Path], encoding: str = "utf-8"
) -> None:
raise NotImplementedError("write_text is not supported by HTTP Storage")
class OSSStorage(Storage):
"""OSS storage."""
def __init__(self, oss_config_file=None):
# read from config file or env var
raise NotImplementedError("OSSStorage.__init__ to be implemented in the future")
def read(self, filepath):
raise NotImplementedError("OSSStorage.read to be implemented in the future")
def read_text(self, filepath, encoding="utf-8"):
raise NotImplementedError(
"OSSStorage.read_text to be implemented in the future"
)
@contextlib.contextmanager
def as_local_path(self, filepath: str) -> Generator[Union[str, Path], None, None]:
"""Download a file from ``filepath``.
``as_local_path`` is decorated by :meth:`contextlib.contextmanager`. It
can be called with ``with`` statement, and when exists from the
``with`` statement, the temporary path will be released.
Args:
filepath (str): Download a file from ``filepath``.
Examples:
>>> storage = OSSStorage()
>>> # After existing from the ``with`` clause,
>>> # the path will be removed
>>> with storage.get_local_path('http://path/to/file') as path:
... # do something here
"""
try:
f = tempfile.NamedTemporaryFile(delete=False)
f.write(self.read(filepath))
f.close()
yield f.name
finally:
os.remove(f.name)
def write(self, obj: bytes, filepath: Union[str, Path]) -> None:
raise NotImplementedError("OSSStorage.write to be implemented in the future")
def write_text(
self, obj: str, filepath: Union[str, Path], encoding: str = "utf-8"
) -> None:
raise NotImplementedError(
"OSSStorage.write_text to be implemented in the future"
)
G_STORAGES = {}
class File(object):
_prefix_to_storage: dict = {
"oss": OSSStorage,
"http": HTTPStorage,
"https": HTTPStorage,
"local": LocalStorage,
}
@staticmethod
def _get_storage(uri):
assert isinstance(uri, str), f"uri should be str type, but got {type(uri)}"
if "://" not in uri:
# local path
storage_type = "local"
else:
prefix, _ = uri.split("://")
storage_type = prefix
assert storage_type in File._prefix_to_storage, (
f"Unsupported uri {uri}, valid prefixs: "
f"{list(File._prefix_to_storage.keys())}"
)
if storage_type not in G_STORAGES:
G_STORAGES[storage_type] = File._prefix_to_storage[storage_type]()
return G_STORAGES[storage_type]
@staticmethod
def read(uri: str) -> bytes:
"""Read data from a given ``filepath`` with 'rb' mode.
Args:
filepath (str or Path): Path to read data.
Returns:
bytes: Expected bytes object.
"""
storage = File._get_storage(uri)
return storage.read(uri)
@staticmethod
def read_text(uri: Union[str, Path], encoding: str = "utf-8") -> str:
"""Read data from a given ``filepath`` with 'r' mode.
Args:
filepath (str or Path): Path to read data.
encoding (str): The encoding format used to open the ``filepath``.
Default: 'utf-8'.
Returns:
str: Expected text reading from ``filepath``.
"""
storage = File._get_storage(uri)
return storage.read_text(uri)
@staticmethod
def write(obj: bytes, uri: Union[str, Path]) -> None:
"""Write data to a given ``filepath`` with 'wb' mode.
Note:
``write`` will create a directory if the directory of ``filepath``
does not exist.
Args:
obj (bytes): Data to be written.
filepath (str or Path): Path to write data.
"""
storage = File._get_storage(uri)
return storage.write(obj, uri)
@staticmethod
def write_text(obj: str, uri: str, encoding: str = "utf-8") -> None:
"""Write data to a given ``filepath`` with 'w' mode.
Note:
``write_text`` will create a directory if the directory of
``filepath`` does not exist.
Args:
obj (str): Data to be written.
filepath (str or Path): Path to write data.
encoding (str): The encoding format used to open the ``filepath``.
Default: 'utf-8'.
"""
storage = File._get_storage(uri)
return storage.write_text(obj, uri)
@contextlib.contextmanager
def as_local_path(uri: str) -> Generator[Union[str, Path], None, None]:
"""Only for unified API and do nothing."""
storage = File._get_storage(uri)
with storage.as_local_path(uri) as local_path:
yield local_path
|