File size: 16,712 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
#  MIT License  (https://opensource.org/licenses/MIT)
# Modified from 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker)

import io
import os
import torch
import requests
import tempfile
import contextlib
import numpy as np
import librosa as sf
from typing import Union
from pathlib import Path
from typing import Generator, Union
from abc import ABCMeta, abstractmethod
import torchaudio.compliance.kaldi as Kaldi

from funasr_detach.models.transformer.utils.nets_utils import pad_list


def check_audio_list(audio: list):
    audio_dur = 0
    for i in range(len(audio)):
        seg = audio[i]
        assert seg[1] >= seg[0], "modelscope error: Wrong time stamps."
        assert isinstance(seg[2], np.ndarray), "modelscope error: Wrong data type."
        assert (
            int(seg[1] * 16000) - int(seg[0] * 16000) == seg[2].shape[0]
        ), "modelscope error: audio data in list is inconsistent with time length."
        if i > 0:
            assert seg[0] >= audio[i - 1][1], "modelscope error: Wrong time stamps."
        audio_dur += seg[1] - seg[0]
    return audio_dur
    # assert audio_dur > 5, 'modelscope error: The effective audio duration is too short.'


def sv_preprocess(inputs: Union[np.ndarray, list]):
    output = []
    for i in range(len(inputs)):
        if isinstance(inputs[i], str):
            file_bytes = File.read(inputs[i])
            data, fs = sf.load(io.BytesIO(file_bytes), dtype="float32")
            if len(data.shape) == 2:
                data = data[:, 0]
            data = torch.from_numpy(data).unsqueeze(0)
            data = data.squeeze(0)
        elif isinstance(inputs[i], np.ndarray):
            assert (
                len(inputs[i].shape) == 1
            ), "modelscope error: Input array should be [N, T]"
            data = inputs[i]
            if data.dtype in ["int16", "int32", "int64"]:
                data = (data / (1 << 15)).astype("float32")
            else:
                data = data.astype("float32")
            data = torch.from_numpy(data)
        else:
            raise ValueError(
                "modelscope error: The input type is restricted to audio address and nump array."
            )
        output.append(data)
    return output


def sv_chunk(vad_segments: list, fs=16000) -> list:
    config = {
        "seg_dur": 1.5,
        "seg_shift": 0.75,
    }

    def seg_chunk(seg_data):
        seg_st = seg_data[0]
        data = seg_data[2]
        chunk_len = int(config["seg_dur"] * fs)
        chunk_shift = int(config["seg_shift"] * fs)
        last_chunk_ed = 0
        seg_res = []
        for chunk_st in range(0, data.shape[0], chunk_shift):
            chunk_ed = min(chunk_st + chunk_len, data.shape[0])
            if chunk_ed <= last_chunk_ed:
                break
            last_chunk_ed = chunk_ed
            chunk_st = max(0, chunk_ed - chunk_len)
            chunk_data = data[chunk_st:chunk_ed]
            if chunk_data.shape[0] < chunk_len:
                chunk_data = np.pad(
                    chunk_data, (0, chunk_len - chunk_data.shape[0]), "constant"
                )
            seg_res.append([chunk_st / fs + seg_st, chunk_ed / fs + seg_st, chunk_data])
        return seg_res

    segs = []
    for i, s in enumerate(vad_segments):
        segs.extend(seg_chunk(s))

    return segs


def extract_feature(audio):
    features = []
    feature_times = []
    feature_lengths = []
    for au in audio:
        feature = Kaldi.fbank(au.unsqueeze(0), num_mel_bins=80)
        feature = feature - feature.mean(dim=0, keepdim=True)
        features.append(feature)
        feature_times.append(au.shape[0])
        feature_lengths.append(feature.shape[0])
    # padding for batch inference
    features_padded = pad_list(features, pad_value=0)
    # features = torch.cat(features)
    return features_padded, feature_lengths, feature_times


def postprocess(
    segments: list, vad_segments: list, labels: np.ndarray, embeddings: np.ndarray
) -> list:
    assert len(segments) == len(labels)
    labels = correct_labels(labels)
    distribute_res = []
    for i in range(len(segments)):
        distribute_res.append([segments[i][0], segments[i][1], labels[i]])
    # merge the same speakers chronologically
    distribute_res = merge_seque(distribute_res)

    # accquire speaker center
    spk_embs = []
    for i in range(labels.max() + 1):
        spk_emb = embeddings[labels == i].mean(0)
        spk_embs.append(spk_emb)
    spk_embs = np.stack(spk_embs)

    def is_overlapped(t1, t2):
        if t1 > t2 + 1e-4:
            return True
        return False

    # distribute the overlap region
    for i in range(1, len(distribute_res)):
        if is_overlapped(distribute_res[i - 1][1], distribute_res[i][0]):
            p = (distribute_res[i][0] + distribute_res[i - 1][1]) / 2
            distribute_res[i][0] = p
            distribute_res[i - 1][1] = p

    # smooth the result
    distribute_res = smooth(distribute_res)

    return distribute_res


def correct_labels(labels):
    labels_id = 0
    id2id = {}
    new_labels = []
    for i in labels:
        if i not in id2id:
            id2id[i] = labels_id
            labels_id += 1
        new_labels.append(id2id[i])
    return np.array(new_labels)


def merge_seque(distribute_res):
    res = [distribute_res[0]]
    for i in range(1, len(distribute_res)):
        if distribute_res[i][2] != res[-1][2] or distribute_res[i][0] > res[-1][1]:
            res.append(distribute_res[i])
        else:
            res[-1][1] = distribute_res[i][1]
    return res


def smooth(res, mindur=1):
    # short segments are assigned to nearest speakers.
    for i in range(len(res)):
        res[i][0] = round(res[i][0], 2)
        res[i][1] = round(res[i][1], 2)
        if res[i][1] - res[i][0] < mindur:
            if i == 0:
                res[i][2] = res[i + 1][2]
            elif i == len(res) - 1:
                res[i][2] = res[i - 1][2]
            elif res[i][0] - res[i - 1][1] <= res[i + 1][0] - res[i][1]:
                res[i][2] = res[i - 1][2]
            else:
                res[i][2] = res[i + 1][2]
    # merge the speakers
    res = merge_seque(res)

    return res


def distribute_spk(sentence_list, sd_time_list):
    sd_sentence_list = []
    for d in sentence_list:
        sentence_start = d["start"]
        sentence_end = d["end"]
        sentence_spk = 0
        max_overlap = 0
        for sd_time in sd_time_list:
            spk_st, spk_ed, spk = sd_time
            spk_st = spk_st * 1000
            spk_ed = spk_ed * 1000
            overlap = max(min(sentence_end, spk_ed) - max(sentence_start, spk_st), 0)
            if overlap > max_overlap:
                max_overlap = overlap
                sentence_spk = spk
        d["spk"] = int(sentence_spk)
        sd_sentence_list.append(d)
    return sd_sentence_list


class Storage(metaclass=ABCMeta):
    """Abstract class of storage.

    All backends need to implement two apis: ``read()`` and ``read_text()``.
    ``read()`` reads the file as a byte stream and ``read_text()`` reads
    the file as texts.
    """

    @abstractmethod
    def read(self, filepath: str):
        pass

    @abstractmethod
    def read_text(self, filepath: str):
        pass

    @abstractmethod
    def write(self, obj: bytes, filepath: Union[str, Path]) -> None:
        pass

    @abstractmethod
    def write_text(
        self, obj: str, filepath: Union[str, Path], encoding: str = "utf-8"
    ) -> None:
        pass


class LocalStorage(Storage):
    """Local hard disk storage"""

    def read(self, filepath: Union[str, Path]) -> bytes:
        """Read data from a given ``filepath`` with 'rb' mode.

        Args:
            filepath (str or Path): Path to read data.

        Returns:
            bytes: Expected bytes object.
        """
        with open(filepath, "rb") as f:
            content = f.read()
        return content

    def read_text(self, filepath: Union[str, Path], encoding: str = "utf-8") -> str:
        """Read data from a given ``filepath`` with 'r' mode.

        Args:
            filepath (str or Path): Path to read data.
            encoding (str): The encoding format used to open the ``filepath``.
                Default: 'utf-8'.

        Returns:
            str: Expected text reading from ``filepath``.
        """
        with open(filepath, "r", encoding=encoding) as f:
            value_buf = f.read()
        return value_buf

    def write(self, obj: bytes, filepath: Union[str, Path]) -> None:
        """Write data to a given ``filepath`` with 'wb' mode.

        Note:
            ``write`` will create a directory if the directory of ``filepath``
            does not exist.

        Args:
            obj (bytes): Data to be written.
            filepath (str or Path): Path to write data.
        """
        dirname = os.path.dirname(filepath)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname, exist_ok=True)

        with open(filepath, "wb") as f:
            f.write(obj)

    def write_text(
        self, obj: str, filepath: Union[str, Path], encoding: str = "utf-8"
    ) -> None:
        """Write data to a given ``filepath`` with 'w' mode.

        Note:
            ``write_text`` will create a directory if the directory of
            ``filepath`` does not exist.

        Args:
            obj (str): Data to be written.
            filepath (str or Path): Path to write data.
            encoding (str): The encoding format used to open the ``filepath``.
                Default: 'utf-8'.
        """
        dirname = os.path.dirname(filepath)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname, exist_ok=True)

        with open(filepath, "w", encoding=encoding) as f:
            f.write(obj)

    @contextlib.contextmanager
    def as_local_path(
        self, filepath: Union[str, Path]
    ) -> Generator[Union[str, Path], None, None]:
        """Only for unified API and do nothing."""
        yield filepath


class HTTPStorage(Storage):
    """HTTP and HTTPS storage."""

    def read(self, url):
        # TODO @wenmeng.zwm add progress bar if file is too large
        r = requests.get(url)
        r.raise_for_status()
        return r.content

    def read_text(self, url):
        r = requests.get(url)
        r.raise_for_status()
        return r.text

    @contextlib.contextmanager
    def as_local_path(self, filepath: str) -> Generator[Union[str, Path], None, None]:
        """Download a file from ``filepath``.

        ``as_local_path`` is decorated by :meth:`contextlib.contextmanager`. It
        can be called with ``with`` statement, and when exists from the
        ``with`` statement, the temporary path will be released.

        Args:
            filepath (str): Download a file from ``filepath``.

        Examples:
            >>> storage = HTTPStorage()
            >>> # After existing from the ``with`` clause,
            >>> # the path will be removed
            >>> with storage.get_local_path('http://path/to/file') as path:
            ...     # do something here
        """
        try:
            f = tempfile.NamedTemporaryFile(delete=False)
            f.write(self.read(filepath))
            f.close()
            yield f.name
        finally:
            os.remove(f.name)

    def write(self, obj: bytes, url: Union[str, Path]) -> None:
        raise NotImplementedError("write is not supported by HTTP Storage")

    def write_text(
        self, obj: str, url: Union[str, Path], encoding: str = "utf-8"
    ) -> None:
        raise NotImplementedError("write_text is not supported by HTTP Storage")


class OSSStorage(Storage):
    """OSS storage."""

    def __init__(self, oss_config_file=None):
        # read from config file or env var
        raise NotImplementedError("OSSStorage.__init__ to be implemented in the future")

    def read(self, filepath):
        raise NotImplementedError("OSSStorage.read to be implemented in the future")

    def read_text(self, filepath, encoding="utf-8"):
        raise NotImplementedError(
            "OSSStorage.read_text to be implemented in the future"
        )

    @contextlib.contextmanager
    def as_local_path(self, filepath: str) -> Generator[Union[str, Path], None, None]:
        """Download a file from ``filepath``.

        ``as_local_path`` is decorated by :meth:`contextlib.contextmanager`. It
        can be called with ``with`` statement, and when exists from the
        ``with`` statement, the temporary path will be released.

        Args:
            filepath (str): Download a file from ``filepath``.

        Examples:
            >>> storage = OSSStorage()
            >>> # After existing from the ``with`` clause,
            >>> # the path will be removed
            >>> with storage.get_local_path('http://path/to/file') as path:
            ...     # do something here
        """
        try:
            f = tempfile.NamedTemporaryFile(delete=False)
            f.write(self.read(filepath))
            f.close()
            yield f.name
        finally:
            os.remove(f.name)

    def write(self, obj: bytes, filepath: Union[str, Path]) -> None:
        raise NotImplementedError("OSSStorage.write to be implemented in the future")

    def write_text(
        self, obj: str, filepath: Union[str, Path], encoding: str = "utf-8"
    ) -> None:
        raise NotImplementedError(
            "OSSStorage.write_text to be implemented in the future"
        )


G_STORAGES = {}


class File(object):
    _prefix_to_storage: dict = {
        "oss": OSSStorage,
        "http": HTTPStorage,
        "https": HTTPStorage,
        "local": LocalStorage,
    }

    @staticmethod
    def _get_storage(uri):
        assert isinstance(uri, str), f"uri should be str type, but got {type(uri)}"

        if "://" not in uri:
            # local path
            storage_type = "local"
        else:
            prefix, _ = uri.split("://")
            storage_type = prefix

        assert storage_type in File._prefix_to_storage, (
            f"Unsupported uri {uri}, valid prefixs: "
            f"{list(File._prefix_to_storage.keys())}"
        )

        if storage_type not in G_STORAGES:
            G_STORAGES[storage_type] = File._prefix_to_storage[storage_type]()

        return G_STORAGES[storage_type]

    @staticmethod
    def read(uri: str) -> bytes:
        """Read data from a given ``filepath`` with 'rb' mode.

        Args:
            filepath (str or Path): Path to read data.

        Returns:
            bytes: Expected bytes object.
        """
        storage = File._get_storage(uri)
        return storage.read(uri)

    @staticmethod
    def read_text(uri: Union[str, Path], encoding: str = "utf-8") -> str:
        """Read data from a given ``filepath`` with 'r' mode.

        Args:
            filepath (str or Path): Path to read data.
            encoding (str): The encoding format used to open the ``filepath``.
                Default: 'utf-8'.

        Returns:
            str: Expected text reading from ``filepath``.
        """
        storage = File._get_storage(uri)
        return storage.read_text(uri)

    @staticmethod
    def write(obj: bytes, uri: Union[str, Path]) -> None:
        """Write data to a given ``filepath`` with 'wb' mode.

        Note:
            ``write`` will create a directory if the directory of ``filepath``
            does not exist.

        Args:
            obj (bytes): Data to be written.
            filepath (str or Path): Path to write data.
        """
        storage = File._get_storage(uri)
        return storage.write(obj, uri)

    @staticmethod
    def write_text(obj: str, uri: str, encoding: str = "utf-8") -> None:
        """Write data to a given ``filepath`` with 'w' mode.

        Note:
            ``write_text`` will create a directory if the directory of
            ``filepath`` does not exist.

        Args:
            obj (str): Data to be written.
            filepath (str or Path): Path to write data.
            encoding (str): The encoding format used to open the ``filepath``.
                Default: 'utf-8'.
        """
        storage = File._get_storage(uri)
        return storage.write_text(obj, uri)

    @contextlib.contextmanager
    def as_local_path(uri: str) -> Generator[Union[str, Path], None, None]:
        """Only for unified API and do nothing."""
        storage = File._get_storage(uri)
        with storage.as_local_path(uri) as local_path:
            yield local_path