Spaces:
Runtime error
Runtime error
File size: 5,640 Bytes
0102e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
from funasr_detach.frontends.default import DefaultFrontend
from funasr_detach.frontends.s3prl import S3prlFrontend
import numpy as np
import torch
import torch.nn as nn
from typing import Tuple
class FusedFrontends(nn.Module):
def __init__(
self, frontends=None, align_method="linear_projection", proj_dim=100, fs=16000
):
super().__init__()
self.align_method = (
align_method # fusing method : linear_projection only for now
)
self.proj_dim = proj_dim # dim of the projection done on each frontend
self.frontends = [] # list of the frontends to combine
for i, frontend in enumerate(frontends):
frontend_type = frontend["frontend_type"]
if frontend_type == "default":
n_mels, fs, n_fft, win_length, hop_length = (
frontend.get("n_mels", 80),
fs,
frontend.get("n_fft", 512),
frontend.get("win_length"),
frontend.get("hop_length", 128),
)
window, center, normalized, onesided = (
frontend.get("window", "hann"),
frontend.get("center", True),
frontend.get("normalized", False),
frontend.get("onesided", True),
)
fmin, fmax, htk, apply_stft = (
frontend.get("fmin", None),
frontend.get("fmax", None),
frontend.get("htk", False),
frontend.get("apply_stft", True),
)
self.frontends.append(
DefaultFrontend(
n_mels=n_mels,
n_fft=n_fft,
fs=fs,
win_length=win_length,
hop_length=hop_length,
window=window,
center=center,
normalized=normalized,
onesided=onesided,
fmin=fmin,
fmax=fmax,
htk=htk,
apply_stft=apply_stft,
)
)
elif frontend_type == "s3prl":
frontend_conf, download_dir, multilayer_feature = (
frontend.get("frontend_conf"),
frontend.get("download_dir"),
frontend.get("multilayer_feature"),
)
self.frontends.append(
S3prlFrontend(
fs=fs,
frontend_conf=frontend_conf,
download_dir=download_dir,
multilayer_feature=multilayer_feature,
)
)
else:
raise NotImplementedError # frontends are only default or s3prl
self.frontends = torch.nn.ModuleList(self.frontends)
self.gcd = np.gcd.reduce([frontend.hop_length for frontend in self.frontends])
self.factors = [frontend.hop_length // self.gcd for frontend in self.frontends]
if torch.cuda.is_available():
dev = "cuda"
else:
dev = "cpu"
if self.align_method == "linear_projection":
self.projection_layers = [
torch.nn.Linear(
in_features=frontend.output_size(),
out_features=self.factors[i] * self.proj_dim,
)
for i, frontend in enumerate(self.frontends)
]
self.projection_layers = torch.nn.ModuleList(self.projection_layers)
self.projection_layers = self.projection_layers.to(torch.device(dev))
def output_size(self) -> int:
return len(self.frontends) * self.proj_dim
def forward(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# step 0 : get all frontends features
self.feats = []
for frontend in self.frontends:
with torch.no_grad():
input_feats, feats_lens = frontend.forward(input, input_lengths)
self.feats.append([input_feats, feats_lens])
if (
self.align_method == "linear_projection"
): # TODO(Dan): to add other align methods
# first step : projections
self.feats_proj = []
for i, frontend in enumerate(self.frontends):
input_feats = self.feats[i][0]
self.feats_proj.append(self.projection_layers[i](input_feats))
# 2nd step : reshape
self.feats_reshaped = []
for i, frontend in enumerate(self.frontends):
input_feats_proj = self.feats_proj[i]
bs, nf, dim = input_feats_proj.shape
input_feats_reshaped = torch.reshape(
input_feats_proj, (bs, nf * self.factors[i], dim // self.factors[i])
)
self.feats_reshaped.append(input_feats_reshaped)
# 3rd step : drop the few last frames
m = min([x.shape[1] for x in self.feats_reshaped])
self.feats_final = [x[:, :m, :] for x in self.feats_reshaped]
input_feats = torch.cat(
self.feats_final, dim=-1
) # change the input size of the preencoder : proj_dim * n_frontends
feats_lens = torch.ones_like(self.feats[0][1]) * (m)
else:
raise NotImplementedError
return input_feats, feats_lens
|