File size: 12,423 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import copy
from typing import Optional
from typing import Tuple
from typing import Union
import logging
import humanfriendly
import numpy as np
import torch
import torch.nn as nn

try:
    from torch_complex.tensor import ComplexTensor
except:
    print("Please install torch_complex firstly")

from funasr_detach.frontends.utils.log_mel import LogMel
from funasr_detach.frontends.utils.stft import Stft
from funasr_detach.frontends.utils.frontend import Frontend
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask


class DefaultFrontend(nn.Module):
    """Conventional frontend structure for ASR.
    Stft -> WPE -> MVDR-Beamformer -> Power-spec -> Mel-Fbank -> CMVN
    """

    def __init__(
        self,
        fs: Union[int, str] = 16000,
        n_fft: int = 512,
        win_length: int = None,
        hop_length: int = 128,
        window: Optional[str] = "hann",
        center: bool = True,
        normalized: bool = False,
        onesided: bool = True,
        n_mels: int = 80,
        fmin: int = None,
        fmax: int = None,
        htk: bool = False,
        frontend_conf: Optional[dict] = None,
        apply_stft: bool = True,
        use_channel: int = None,
    ):
        super().__init__()
        if isinstance(fs, str):
            fs = humanfriendly.parse_size(fs)

        # Deepcopy (In general, dict shouldn't be used as default arg)
        frontend_conf = copy.deepcopy(frontend_conf)
        self.hop_length = hop_length

        if apply_stft:
            self.stft = Stft(
                n_fft=n_fft,
                win_length=win_length,
                hop_length=hop_length,
                center=center,
                window=window,
                normalized=normalized,
                onesided=onesided,
            )
        else:
            self.stft = None
        self.apply_stft = apply_stft

        if frontend_conf is not None:
            self.frontend = Frontend(idim=n_fft // 2 + 1, **frontend_conf)
        else:
            self.frontend = None

        self.logmel = LogMel(
            fs=fs,
            n_fft=n_fft,
            n_mels=n_mels,
            fmin=fmin,
            fmax=fmax,
            htk=htk,
        )
        self.n_mels = n_mels
        self.use_channel = use_channel
        self.frontend_type = "default"

    def output_size(self) -> int:
        return self.n_mels

    def forward(
        self, input: torch.Tensor, input_lengths: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # 1. Domain-conversion: e.g. Stft: time -> time-freq
        if self.stft is not None:
            input_stft, feats_lens = self._compute_stft(input, input_lengths)
        else:
            input_stft = ComplexTensor(input[..., 0], input[..., 1])
            feats_lens = input_lengths
        # 2. [Option] Speech enhancement
        if self.frontend is not None:
            assert isinstance(input_stft, ComplexTensor), type(input_stft)
            # input_stft: (Batch, Length, [Channel], Freq)
            input_stft, _, mask = self.frontend(input_stft, feats_lens)

        # 3. [Multi channel case]: Select a channel
        if input_stft.dim() == 4:
            # h: (B, T, C, F) -> h: (B, T, F)
            if self.training:
                if self.use_channel is not None:
                    input_stft = input_stft[:, :, self.use_channel, :]
                else:
                    # Select 1ch randomly
                    ch = np.random.randint(input_stft.size(2))
                    input_stft = input_stft[:, :, ch, :]
            else:
                # Use the first channel
                input_stft = input_stft[:, :, 0, :]

        # 4. STFT -> Power spectrum
        # h: ComplexTensor(B, T, F) -> torch.Tensor(B, T, F)
        input_power = input_stft.real**2 + input_stft.imag**2

        # 5. Feature transform e.g. Stft -> Log-Mel-Fbank
        # input_power: (Batch, [Channel,] Length, Freq)
        #       -> input_feats: (Batch, Length, Dim)
        input_feats, _ = self.logmel(input_power, feats_lens)

        return input_feats, feats_lens

    def _compute_stft(
        self, input: torch.Tensor, input_lengths: torch.Tensor
    ) -> torch.Tensor:
        input_stft, feats_lens = self.stft(input, input_lengths)

        assert input_stft.dim() >= 4, input_stft.shape
        # "2" refers to the real/imag parts of Complex
        assert input_stft.shape[-1] == 2, input_stft.shape

        # Change torch.Tensor to ComplexTensor
        # input_stft: (..., F, 2) -> (..., F)
        input_stft = ComplexTensor(input_stft[..., 0], input_stft[..., 1])
        return input_stft, feats_lens


class MultiChannelFrontend(nn.Module):
    """Conventional frontend structure for ASR.
    Stft -> WPE -> MVDR-Beamformer -> Power-spec -> Mel-Fbank -> CMVN
    """

    def __init__(
        self,
        fs: Union[int, str] = 16000,
        n_fft: int = 512,
        win_length: int = None,
        hop_length: int = None,
        frame_length: int = None,
        frame_shift: int = None,
        window: Optional[str] = "hann",
        center: bool = True,
        normalized: bool = False,
        onesided: bool = True,
        n_mels: int = 80,
        fmin: int = None,
        fmax: int = None,
        htk: bool = False,
        frontend_conf: Optional[dict] = None,
        apply_stft: bool = True,
        use_channel: int = None,
        lfr_m: int = 1,
        lfr_n: int = 1,
        cmvn_file: str = None,
        mc: bool = True,
    ):
        super().__init__()
        if isinstance(fs, str):
            fs = humanfriendly.parse_size(fs)

        # Deepcopy (In general, dict shouldn't be used as default arg)
        frontend_conf = copy.deepcopy(frontend_conf)
        if win_length is None and hop_length is None:
            self.win_length = frame_length * 16
            self.hop_length = frame_shift * 16
        elif frame_length is None and frame_shift is None:
            self.win_length = self.win_length
            self.hop_length = self.hop_length
        else:
            logging.error(
                "Only one of (win_length, hop_length) and (frame_length, frame_shift)"
                "can be set."
            )
            exit(1)

        if apply_stft:
            self.stft = Stft(
                n_fft=n_fft,
                win_length=self.win_length,
                hop_length=self.hop_length,
                center=center,
                window=window,
                normalized=normalized,
                onesided=onesided,
            )
        else:
            self.stft = None
        self.apply_stft = apply_stft

        if frontend_conf is not None:
            self.frontend = Frontend(idim=n_fft // 2 + 1, **frontend_conf)
        else:
            self.frontend = None

        self.logmel = LogMel(
            fs=fs,
            n_fft=n_fft,
            n_mels=n_mels,
            fmin=fmin,
            fmax=fmax,
            htk=htk,
        )
        self.n_mels = n_mels
        self.use_channel = use_channel
        self.mc = mc
        if not self.mc:
            if self.use_channel is not None:
                logging.info("use the channel %d" % (self.use_channel))
            else:
                logging.info("random select channel")
            self.cmvn_file = cmvn_file
            if self.cmvn_file is not None:
                mean, std = self._load_cmvn(self.cmvn_file)
                self.register_buffer("mean", torch.from_numpy(mean))
                self.register_buffer("std", torch.from_numpy(std))
        self.frontend_type = "multichannelfrontend"

    def output_size(self) -> int:
        return self.n_mels

    def forward(
        self, input: torch.Tensor, input_lengths: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # 1. Domain-conversion: e.g. Stft: time -> time-freq
        # import pdb;pdb.set_trace()
        if self.stft is not None:
            input_stft, feats_lens = self._compute_stft(input, input_lengths)
        else:
            input_stft = ComplexTensor(input[..., 0], input[..., 1])
            feats_lens = input_lengths
        # 2. [Option] Speech enhancement
        if self.frontend is not None:
            assert isinstance(input_stft, ComplexTensor), type(input_stft)
            # input_stft: (Batch, Length, [Channel], Freq)
            input_stft, _, mask = self.frontend(input_stft, feats_lens)

        # 3. [Multi channel case]: Select a channel(sa_asr)
        if input_stft.dim() == 4 and not self.mc:
            # h: (B, T, C, F) -> h: (B, T, F)
            if self.training:
                if self.use_channel is not None:
                    input_stft = input_stft[:, :, self.use_channel, :]

                else:
                    # Select 1ch randomly
                    ch = np.random.randint(input_stft.size(2))
                    input_stft = input_stft[:, :, ch, :]
            else:
                # Use the first channel
                input_stft = input_stft[:, :, 0, :]

        # 4. STFT -> Power spectrum
        # h: ComplexTensor(B, T, F) -> torch.Tensor(B, T, F)
        input_power = input_stft.real**2 + input_stft.imag**2

        # 5. Feature transform e.g. Stft -> Log-Mel-Fbank
        # input_power: (Batch, [Channel,] Length, Freq)
        #       -> input_feats: (Batch, Length, Dim)
        input_feats, _ = self.logmel(input_power, feats_lens)
        if self.mc:
            # MFCCA
            if input_feats.dim() == 4:
                bt = input_feats.size(0)
                channel_size = input_feats.size(2)
                input_feats = (
                    input_feats.transpose(1, 2)
                    .reshape(bt * channel_size, -1, 80)
                    .contiguous()
                )
                feats_lens = feats_lens.repeat(1, channel_size).squeeze()
            else:
                channel_size = 1
            return input_feats, feats_lens, channel_size
        else:
            # 6. Apply CMVN
            if self.cmvn_file is not None:
                if feats_lens is None:
                    feats_lens = input_feats.new_full(
                        [input_feats.size(0)], input_feats.size(1)
                    )
                self.mean = self.mean.to(input_feats.device, input_feats.dtype)
                self.std = self.std.to(input_feats.device, input_feats.dtype)
                mask = make_pad_mask(feats_lens, input_feats, 1)

                if input_feats.requires_grad:
                    input_feats = input_feats + self.mean
                else:
                    input_feats += self.mean
                if input_feats.requires_grad:
                    input_feats = input_feats.masked_fill(mask, 0.0)
                else:
                    input_feats.masked_fill_(mask, 0.0)

                input_feats *= self.std

            return input_feats, feats_lens

    def _compute_stft(
        self, input: torch.Tensor, input_lengths: torch.Tensor
    ) -> torch.Tensor:
        input_stft, feats_lens = self.stft(input, input_lengths)

        assert input_stft.dim() >= 4, input_stft.shape
        # "2" refers to the real/imag parts of Complex
        assert input_stft.shape[-1] == 2, input_stft.shape

        # Change torch.Tensor to ComplexTensor
        # input_stft: (..., F, 2) -> (..., F)
        input_stft = ComplexTensor(input_stft[..., 0], input_stft[..., 1])
        return input_stft, feats_lens

    def _load_cmvn(self, cmvn_file):
        with open(cmvn_file, "r", encoding="utf-8") as f:
            lines = f.readlines()
        means_list = []
        vars_list = []
        for i in range(len(lines)):
            line_item = lines[i].split()
            if line_item[0] == "<AddShift>":
                line_item = lines[i + 1].split()
                if line_item[0] == "<LearnRateCoef>":
                    add_shift_line = line_item[3 : (len(line_item) - 1)]
                    means_list = list(add_shift_line)
                    continue
            elif line_item[0] == "<Rescale>":
                line_item = lines[i + 1].split()
                if line_item[0] == "<LearnRateCoef>":
                    rescale_line = line_item[3 : (len(line_item) - 1)]
                    vars_list = list(rescale_line)
                    continue
        means = np.array(means_list).astype(np.float)
        vars = np.array(vars_list).astype(np.float)
        return means, vars