Spaces:
Runtime error
Runtime error
File size: 7,893 Bytes
0102e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
import os
import sys
import torch
import hydra
import logging
import argparse
from io import BytesIO
import torch.distributed as dist
from collections.abc import Sequence
from omegaconf import DictConfig, OmegaConf
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from funasr_detach.register import tables
from funasr_detach.optimizers import optim_classes
from funasr_detach.train_utils.trainer import Trainer
from funasr_detach.schedulers import scheduler_classes
from funasr_detach.train_utils.initialize import initialize
from funasr_detach.download.download_from_hub import download_model
from funasr_detach.models.lora.utils import mark_only_lora_as_trainable
from funasr_detach.train_utils.set_all_random_seed import set_all_random_seed
from funasr_detach.train_utils.load_pretrained_model import load_pretrained_model
# from funasr_detach.tokenizer.build_tokenizer import build_tokenizer
# from funasr_detach.tokenizer.token_id_converter import TokenIDConverter
# from funasr_detach.tokenizer.funtoken import build_tokenizer
@hydra.main(config_name=None, version_base=None)
def main_hydra(kwargs: DictConfig):
if kwargs.get("debug", False):
import pdb
pdb.set_trace()
assert "model" in kwargs
if "model_conf" not in kwargs:
logging.info(
"download models from model hub: {}".format(kwargs.get("model_hub", "ms"))
)
kwargs = download_model(is_training=kwargs.get("is_training", True), **kwargs)
main(**kwargs)
def main(**kwargs):
print(kwargs)
# set random seed
set_all_random_seed(kwargs.get("seed", 0))
torch.backends.cudnn.enabled = kwargs.get(
"cudnn_enabled", torch.backends.cudnn.enabled
)
torch.backends.cudnn.benchmark = kwargs.get(
"cudnn_benchmark", torch.backends.cudnn.benchmark
)
torch.backends.cudnn.deterministic = kwargs.get("cudnn_deterministic", True)
local_rank = int(os.environ.get("LOCAL_RANK", 0))
if local_rank == 0:
tables.print()
# Check if we are using DDP or FSDP
use_ddp = "WORLD_SIZE" in os.environ and int(os.environ["WORLD_SIZE"]) > 1
use_fsdp = kwargs.get("use_fsdp", None)
if use_ddp or use_fsdp:
dist.init_process_group(
backend=kwargs.get("backend", "nccl"), init_method="env://"
)
torch.cuda.set_device(local_rank)
# save config.yaml
if (
(use_ddp or use_fsdp)
and dist.get_rank() == 0
or not (use_ddp or use_fsdp)
and local_rank == 0
):
os.makedirs(kwargs.get("output_dir", "./"), exist_ok=True)
yaml_file = os.path.join(kwargs.get("output_dir", "./"), "config.yaml")
OmegaConf.save(config=kwargs, f=yaml_file)
logging.info("config.yaml is saved to: %s", yaml_file)
tokenizer = kwargs.get("tokenizer", None)
if tokenizer is not None:
tokenizer_class = tables.tokenizer_classes.get(tokenizer)
tokenizer = tokenizer_class(**kwargs["tokenizer_conf"])
kwargs["tokenizer"] = tokenizer
# build frontend if frontend is none None
frontend = kwargs.get("frontend", None)
if frontend is not None:
frontend_class = tables.frontend_classes.get(frontend)
frontend = frontend_class(**kwargs["frontend_conf"])
kwargs["frontend"] = frontend
kwargs["input_size"] = frontend.output_size()
# build model
model_class = tables.model_classes.get(kwargs["model"])
model = model_class(
**kwargs, **kwargs["model_conf"], vocab_size=len(tokenizer.token_list)
)
# init_param
init_param = kwargs.get("init_param", None)
if init_param is not None:
if not isinstance(init_param, (list, tuple)):
init_param = (init_param,)
logging.info("init_param is not None: %s", init_param)
for p in init_param:
logging.info(f"Loading pretrained params from {p}")
load_pretrained_model(
model=model,
path=p,
ignore_init_mismatch=kwargs.get("ignore_init_mismatch", True),
oss_bucket=kwargs.get("oss_bucket", None),
scope_map=kwargs.get("scope_map", None),
excludes=kwargs.get("excludes", None),
)
else:
initialize(model, kwargs.get("init", "kaiming_normal"))
# freeze_param
freeze_param = kwargs.get("freeze_param", None)
if freeze_param is not None:
freeze_param = eval(freeze_param)
if isinstance(freeze_param, Sequence):
freeze_param = (freeze_param,)
logging.info("freeze_param is not None: %s", freeze_param)
for t in freeze_param:
for k, p in model.named_parameters():
if k.startswith(t + ".") or k == t:
logging.info(f"Setting {k}.requires_grad = False")
p.requires_grad = False
if use_ddp:
model = model.cuda(local_rank)
model = DDP(
model,
device_ids=[local_rank],
find_unused_parameters=kwargs.get("train_conf", {}).get(
"find_unused_parameters", False
),
)
elif use_fsdp:
model = FSDP(model).cuda(local_rank)
else:
model = model.to(device=kwargs.get("device", "cuda"))
# optim
optim = kwargs.get("optim", "adam")
assert optim in optim_classes
optim_class = optim_classes.get(optim)
optim = optim_class(model.parameters(), **kwargs.get("optim_conf"))
# scheduler
scheduler = kwargs.get("scheduler", "warmuplr")
assert scheduler in scheduler_classes
scheduler_class = scheduler_classes.get(scheduler)
scheduler = scheduler_class(optim, **kwargs.get("scheduler_conf"))
# dataset
dataset_class = tables.dataset_classes.get(kwargs.get("dataset", "AudioDataset"))
dataset_tr = dataset_class(
kwargs.get("train_data_set_list"),
frontend=frontend,
tokenizer=tokenizer,
is_training=True,
**kwargs.get("dataset_conf"),
)
dataset_val = dataset_class(
kwargs.get("valid_data_set_list"),
frontend=frontend,
tokenizer=tokenizer,
is_training=False,
**kwargs.get("dataset_conf"),
)
# dataloader
batch_sampler = kwargs["dataset_conf"].get(
"batch_sampler", "DynamicBatchLocalShuffleSampler"
)
batch_sampler_val = None
if batch_sampler is not None:
batch_sampler_class = tables.batch_sampler_classes.get(batch_sampler)
batch_sampler = batch_sampler_class(dataset_tr, **kwargs.get("dataset_conf"))
batch_sampler_val = batch_sampler_class(
dataset_val, is_training=False, **kwargs.get("dataset_conf")
)
dataloader_tr = torch.utils.data.DataLoader(
dataset_tr,
collate_fn=dataset_tr.collator,
batch_sampler=batch_sampler,
num_workers=kwargs.get("dataset_conf").get("num_workers", 4),
pin_memory=True,
)
dataloader_val = torch.utils.data.DataLoader(
dataset_val,
collate_fn=dataset_val.collator,
batch_sampler=batch_sampler_val,
num_workers=kwargs.get("dataset_conf").get("num_workers", 4),
pin_memory=True,
)
trainer = Trainer(
model=model,
optim=optim,
scheduler=scheduler,
dataloader_train=dataloader_tr,
dataloader_val=dataloader_val,
local_rank=local_rank,
use_ddp=use_ddp,
use_fsdp=use_fsdp,
output_dir=kwargs.get("output_dir", "./exp"),
resume=kwargs.get("resume", True),
**kwargs.get("train_conf"),
)
trainer.run()
if use_ddp or use_fsdp:
torch.distributed.destroy_process_group()
if __name__ == "__main__":
main_hydra()
|