Spaces:
Runtime error
Runtime error
File size: 23,445 Bytes
0102e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
import json
import time
import copy
import torch
import random
import string
import logging
import os.path
import numpy as np
from tqdm import tqdm
from funasr_detach.register import tables
from funasr_detach.utils.load_utils import load_bytes
from funasr_detach.download.file import download_from_url
from funasr_detach.download.download_from_hub import download_model
from funasr_detach.utils.vad_utils import slice_padding_audio_samples
from funasr_detach.train_utils.set_all_random_seed import set_all_random_seed
from funasr_detach.train_utils.load_pretrained_model import load_pretrained_model
from funasr_detach.utils.load_utils import load_audio_text_image_video
from funasr_detach.utils.timestamp_tools import timestamp_sentence
from funasr_detach.models.campplus.utils import sv_chunk, postprocess, distribute_spk
try:
from funasr_detach.models.campplus.cluster_backend import ClusterBackend
except:
print("If you want to use the speaker diarization, please `pip install hdbscan`")
def prepare_data_iterator(data_in, input_len=None, data_type=None, key=None):
"""
:param input:
:param input_len:
:param data_type:
:param frontend:
:return:
"""
data_list = []
key_list = []
filelist = [".scp", ".txt", ".json", ".jsonl"]
chars = string.ascii_letters + string.digits
if isinstance(data_in, str) and data_in.startswith("http"): # url
data_in = download_from_url(data_in)
if isinstance(data_in, str) and os.path.exists(
data_in
): # wav_path; filelist: wav.scp, file.jsonl;text.txt;
_, file_extension = os.path.splitext(data_in)
file_extension = file_extension.lower()
if file_extension in filelist: # filelist: wav.scp, file.jsonl;text.txt;
with open(data_in, encoding="utf-8") as fin:
for line in fin:
key = "rand_key_" + "".join(random.choice(chars) for _ in range(13))
if data_in.endswith(
".jsonl"
): # file.jsonl: json.dumps({"source": data})
lines = json.loads(line.strip())
data = lines["source"]
key = data["key"] if "key" in data else key
else: # filelist, wav.scp, text.txt: id \t data or data
lines = line.strip().split(maxsplit=1)
data = lines[1] if len(lines) > 1 else lines[0]
key = lines[0] if len(lines) > 1 else key
data_list.append(data)
key_list.append(key)
else:
key = "rand_key_" + "".join(random.choice(chars) for _ in range(13))
data_list = [data_in]
key_list = [key]
elif isinstance(data_in, (list, tuple)):
if data_type is not None and isinstance(
data_type, (list, tuple)
): # mutiple inputs
data_list_tmp = []
for data_in_i, data_type_i in zip(data_in, data_type):
key_list, data_list_i = prepare_data_iterator(
data_in=data_in_i, data_type=data_type_i
)
data_list_tmp.append(data_list_i)
data_list = []
for item in zip(*data_list_tmp):
data_list.append(item)
else:
# [audio sample point, fbank, text]
data_list = data_in
key_list = [
"rand_key_" + "".join(random.choice(chars) for _ in range(13))
for _ in range(len(data_in))
]
else: # raw text; audio sample point, fbank; bytes
if isinstance(data_in, bytes): # audio bytes
data_in = load_bytes(data_in)
if key is None:
key = "rand_key_" + "".join(random.choice(chars) for _ in range(13))
data_list = [data_in]
key_list = [key]
return key_list, data_list
class AutoModel:
def __init__(self, **kwargs):
if not kwargs.get("disable_log", False):
tables.print()
model, kwargs = self.build_model(**kwargs)
# if vad_model is not None, build vad model else None
vad_model = kwargs.get("vad_model", None)
vad_kwargs = kwargs.get("vad_model_revision", None)
if vad_model is not None:
logging.info("Building VAD model.")
vad_kwargs = {
"model": vad_model,
"model_revision": vad_kwargs,
"device": kwargs["device"],
}
vad_model, vad_kwargs = self.build_model(**vad_kwargs)
# if punc_model is not None, build punc model else None
punc_model = kwargs.get("punc_model", None)
punc_kwargs = kwargs.get("punc_model_revision", None)
if punc_model is not None:
logging.info("Building punc model.")
punc_kwargs = {
"model": punc_model,
"model_revision": punc_kwargs,
"device": kwargs["device"],
}
punc_model, punc_kwargs = self.build_model(**punc_kwargs)
# if spk_model is not None, build spk model else None
spk_model = kwargs.get("spk_model", None)
spk_kwargs = kwargs.get("spk_model_revision", None)
if spk_model is not None:
logging.info("Building SPK model.")
spk_kwargs = {
"model": spk_model,
"model_revision": spk_kwargs,
"device": kwargs["device"],
}
spk_model, spk_kwargs = self.build_model(**spk_kwargs)
self.cb_model = ClusterBackend().to(kwargs["device"])
spk_mode = kwargs.get("spk_mode", "punc_segment")
if spk_mode not in ["default", "vad_segment", "punc_segment"]:
logging.error(
"spk_mode should be one of default, vad_segment and punc_segment."
)
self.spk_mode = spk_mode
self.kwargs = kwargs
self.model = model
self.vad_model = vad_model
self.vad_kwargs = vad_kwargs
self.punc_model = punc_model
self.punc_kwargs = punc_kwargs
self.spk_model = spk_model
self.spk_kwargs = spk_kwargs
self.model_path = kwargs.get("model_path")
def build_model(self, **kwargs):
assert "model" in kwargs
if "model_conf" not in kwargs:
logging.info(
"download models from model hub: {}".format(
kwargs.get("model_hub", "ms")
)
)
kwargs = download_model(**kwargs)
set_all_random_seed(kwargs.get("seed", 0))
device = kwargs.get("device", "cuda")
if not torch.cuda.is_available() or kwargs.get("ngpu", 1) == 0:
device = "cpu"
kwargs["batch_size"] = 1
kwargs["device"] = device
if kwargs.get("ncpu", None):
torch.set_num_threads(kwargs.get("ncpu"))
# build tokenizer
tokenizer = kwargs.get("tokenizer", None)
if tokenizer is not None:
tokenizer_class = tables.tokenizer_classes.get(tokenizer)
tokenizer = tokenizer_class(**kwargs["tokenizer_conf"])
kwargs["tokenizer"] = tokenizer
kwargs["token_list"] = tokenizer.token_list
vocab_size = len(tokenizer.token_list)
else:
vocab_size = -1
# build frontend
frontend = kwargs.get("frontend", None)
if frontend is not None:
frontend_class = tables.frontend_classes.get(frontend)
frontend = frontend_class(**kwargs["frontend_conf"])
kwargs["frontend"] = frontend
kwargs["input_size"] = frontend.output_size()
# build model
model_class = tables.model_classes.get(kwargs["model"])
model = model_class(**kwargs, **kwargs["model_conf"], vocab_size=vocab_size)
model.to(device)
# init_param
init_param = kwargs.get("init_param", None)
if init_param is not None:
logging.info(f"Loading pretrained params from {init_param}")
load_pretrained_model(
model=model,
path=init_param,
ignore_init_mismatch=kwargs.get("ignore_init_mismatch", False),
oss_bucket=kwargs.get("oss_bucket", None),
scope_map=kwargs.get("scope_map", None),
excludes=kwargs.get("excludes", None),
)
return model, kwargs
def __call__(self, *args, **cfg):
kwargs = self.kwargs
kwargs.update(cfg)
res = self.model(*args, kwargs)
return res
def generate(self, input, input_len=None, **cfg):
if self.vad_model is None:
return self.inference(input, input_len=input_len, **cfg)
else:
return self.inference_with_vad(input, input_len=input_len, **cfg)
def inference(
self, input, input_len=None, model=None, kwargs=None, key=None, **cfg
):
kwargs = self.kwargs if kwargs is None else kwargs
kwargs.update(cfg)
model = self.model if model is None else model
model = model.cuda()
model.eval()
batch_size = kwargs.get("batch_size", 1)
# if kwargs.get("device", "cpu") == "cpu":
# batch_size = 1
key_list, data_list = prepare_data_iterator(
input, input_len=input_len, data_type=kwargs.get("data_type", None), key=key
)
speed_stats = {}
asr_result_list = []
num_samples = len(data_list)
disable_pbar = kwargs.get("disable_pbar", False)
pbar = (
tqdm(colour="blue", total=num_samples, dynamic_ncols=True)
if not disable_pbar
else None
)
time_speech_total = 0.0
time_escape_total = 0.0
for beg_idx in range(0, num_samples, batch_size):
end_idx = min(num_samples, beg_idx + batch_size)
data_batch = data_list[beg_idx:end_idx]
key_batch = key_list[beg_idx:end_idx]
batch = {"data_in": data_batch, "key": key_batch}
if (end_idx - beg_idx) == 1 and kwargs.get(
"data_type", None
) == "fbank": # fbank
batch["data_in"] = data_batch[0]
batch["data_lengths"] = input_len
time1 = time.perf_counter()
with torch.no_grad():
results, meta_data = model.inference(**batch, **kwargs)
time2 = time.perf_counter()
asr_result_list.extend(results)
# batch_data_time = time_per_frame_s * data_batch_i["speech_lengths"].sum().item()
batch_data_time = meta_data.get("batch_data_time", -1)
time_escape = time2 - time1
speed_stats["load_data"] = meta_data.get("load_data", 0.0)
speed_stats["extract_feat"] = meta_data.get("extract_feat", 0.0)
speed_stats["forward"] = f"{time_escape:0.3f}"
speed_stats["batch_size"] = f"{len(results)}"
speed_stats["time_cost"] = f"{(time_escape)}"
speed_stats["rtf"] = f"{(time_escape) / batch_data_time:0.3f}"
description = f"{speed_stats}, "
if pbar:
pbar.update(1)
pbar.set_description(description)
time_speech_total += batch_data_time
time_escape_total += time_escape
if pbar:
# pbar.update(1)
pbar.set_description(f"rtf_avg: {time_escape_total/time_speech_total:0.3f}")
torch.cuda.empty_cache()
return asr_result_list
def inference_with_vad(self, input, input_len=None, **cfg):
# step.1: compute the vad model
self.vad_kwargs.update(cfg)
beg_vad = time.time()
res = self.inference(
input,
input_len=input_len,
model=self.vad_model,
kwargs=self.vad_kwargs,
**cfg,
)
end_vad = time.time()
print(f"time cost vad: {end_vad - beg_vad:0.3f}")
# step.2 compute asr model
model = self.model
kwargs = self.kwargs
kwargs.update(cfg)
batch_size = int(kwargs.get("batch_size_s", 300)) * 1000
batch_size_threshold_ms = int(kwargs.get("batch_size_threshold_s", 60)) * 1000
kwargs["batch_size"] = batch_size
key_list, data_list = prepare_data_iterator(
input, input_len=input_len, data_type=kwargs.get("data_type", None)
)
results_ret_list = []
time_speech_total_all_samples = 1e-6
beg_total = time.time()
pbar_total = tqdm(colour="red", total=len(res), dynamic_ncols=True)
for i in range(len(res)):
key = res[i]["key"]
vadsegments = res[i]["value"]
input_i = data_list[i]
speech = load_audio_text_image_video(
input_i, fs=kwargs["frontend"].fs, audio_fs=kwargs.get("fs", 16000)
)
speech_lengths = len(speech)
n = len(vadsegments)
data_with_index = [(vadsegments[i], i) for i in range(n)]
sorted_data = sorted(data_with_index, key=lambda x: x[0][1] - x[0][0])
results_sorted = []
if not len(sorted_data):
logging.info("decoding, utt: {}, empty speech".format(key))
continue
if len(sorted_data) > 0 and len(sorted_data[0]) > 0:
batch_size = max(
batch_size, sorted_data[0][0][1] - sorted_data[0][0][0]
)
batch_size_ms_cum = 0
beg_idx = 0
beg_asr_total = time.time()
time_speech_total_per_sample = speech_lengths / 16000
time_speech_total_all_samples += time_speech_total_per_sample
all_segments = []
for j, _ in enumerate(range(0, n)):
# pbar_sample.update(1)
batch_size_ms_cum += sorted_data[j][0][1] - sorted_data[j][0][0]
if (
j < n - 1
and (
batch_size_ms_cum
+ sorted_data[j + 1][0][1]
- sorted_data[j + 1][0][0]
)
< batch_size
and (sorted_data[j + 1][0][1] - sorted_data[j + 1][0][0])
< batch_size_threshold_ms
):
continue
batch_size_ms_cum = 0
end_idx = j + 1
speech_j, speech_lengths_j = slice_padding_audio_samples(
speech, speech_lengths, sorted_data[beg_idx:end_idx]
)
results = self.inference(
speech_j,
input_len=None,
model=model,
kwargs=kwargs,
disable_pbar=True,
**cfg,
)
if self.spk_model is not None:
# compose vad segments: [[start_time_sec, end_time_sec, speech], [...]]
for _b in range(len(speech_j)):
vad_segments = [
[
sorted_data[beg_idx:end_idx][_b][0][0] / 1000.0,
sorted_data[beg_idx:end_idx][_b][0][1] / 1000.0,
np.array(speech_j[_b]),
]
]
segments = sv_chunk(vad_segments)
all_segments.extend(segments)
speech_b = [i[2] for i in segments]
spk_res = self.inference(
speech_b,
input_len=None,
model=self.spk_model,
kwargs=kwargs,
disable_pbar=True,
**cfg,
)
results[_b]["spk_embedding"] = spk_res[0]["spk_embedding"]
beg_idx = end_idx
if len(results) < 1:
continue
results_sorted.extend(results)
restored_data = [0] * n
for j in range(n):
index = sorted_data[j][1]
restored_data[index] = results_sorted[j]
result = {}
# results combine for texts, timestamps, speaker embeddings and others
# TODO: rewrite for clean code
for j in range(n):
for k, v in restored_data[j].items():
if k.startswith("timestamp"):
if k not in result:
result[k] = []
for t in restored_data[j][k]:
t[0] += vadsegments[j][0]
t[1] += vadsegments[j][0]
result[k].extend(restored_data[j][k])
elif k == "spk_embedding":
if k not in result:
result[k] = restored_data[j][k]
else:
result[k] = torch.cat(
[result[k], restored_data[j][k]], dim=0
)
elif "text" in k:
if k not in result:
result[k] = restored_data[j][k]
else:
result[k] += " " + restored_data[j][k]
else:
if k not in result:
result[k] = restored_data[j][k]
else:
result[k] += restored_data[j][k]
return_raw_text = kwargs.get("return_raw_text", False)
# step.3 compute punc model
if self.punc_model is not None:
self.punc_kwargs.update(cfg)
punc_res = self.inference(
result["text"],
model=self.punc_model,
kwargs=self.punc_kwargs,
disable_pbar=True,
**cfg,
)
raw_text = copy.copy(result["text"])
if return_raw_text:
result["raw_text"] = raw_text
result["text"] = punc_res[0]["text"]
else:
raw_text = None
# speaker embedding cluster after resorted
if self.spk_model is not None and kwargs.get("return_spk_res", True):
if raw_text is None:
logging.error("Missing punc_model, which is required by spk_model.")
all_segments = sorted(all_segments, key=lambda x: x[0])
spk_embedding = result["spk_embedding"]
labels = self.cb_model(
spk_embedding.cpu(), oracle_num=kwargs.get("preset_spk_num", None)
)
# del result['spk_embedding']
sv_output = postprocess(all_segments, None, labels, spk_embedding.cpu())
if self.spk_mode == "vad_segment": # recover sentence_list
sentence_list = []
for res, vadsegment in zip(restored_data, vadsegments):
if "timestamp" not in res:
logging.error(
"Only 'iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch' \
and 'iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch'\
can predict timestamp, and speaker diarization relies on timestamps."
)
sentence_list.append(
{
"start": vadsegment[0],
"end": vadsegment[1],
"sentence": res["text"],
"timestamp": res["timestamp"],
}
)
elif self.spk_mode == "punc_segment":
if "timestamp" not in result:
logging.error(
"Only 'iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch' \
and 'iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch'\
can predict timestamp, and speaker diarization relies on timestamps."
)
sentence_list = timestamp_sentence(
punc_res[0]["punc_array"],
result["timestamp"],
raw_text,
return_raw_text=return_raw_text,
)
distribute_spk(sentence_list, sv_output)
result["sentence_info"] = sentence_list
elif kwargs.get("sentence_timestamp", False):
sentence_list = timestamp_sentence(
punc_res[0]["punc_array"],
result["timestamp"],
raw_text,
return_raw_text=return_raw_text,
)
result["sentence_info"] = sentence_list
if "spk_embedding" in result:
del result["spk_embedding"]
result["key"] = key
results_ret_list.append(result)
end_asr_total = time.time()
time_escape_total_per_sample = end_asr_total - beg_asr_total
pbar_total.update(1)
pbar_total.set_description(
f"rtf_avg: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, "
f"time_speech: {time_speech_total_per_sample: 0.3f}, "
f"time_escape: {time_escape_total_per_sample:0.3f}"
)
return results_ret_list
def infer_encoder(
self, input, input_len=None, model=None, kwargs=None, key=None, **cfg
):
kwargs = self.kwargs if kwargs is None else kwargs
kwargs.update(cfg)
model = self.model if model is None else model
model = model.cuda()
model.eval()
batch_size = kwargs.get("batch_size", 1)
key_list, data_list = prepare_data_iterator(
input, input_len=input_len, data_type=kwargs.get("data_type", None), key=key
)
asr_result_list = []
num_samples = len(data_list)
for beg_idx in range(0, num_samples, batch_size):
end_idx = min(num_samples, beg_idx + batch_size)
data_batch = data_list[beg_idx:end_idx]
key_batch = key_list[beg_idx:end_idx]
batch = {"data_in": data_batch, "key": key_batch}
if (end_idx - beg_idx) == 1 and kwargs.get(
"data_type", None
) == "fbank": # fbank
batch["data_in"] = data_batch[0]
batch["data_lengths"] = input_len
with torch.no_grad():
results, meta_data, cache = model.infer_encoder(**batch, **kwargs)
asr_result_list.extend(results)
torch.cuda.empty_cache()
return asr_result_list, cache
|