File size: 23,445 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import json
import time
import copy
import torch
import random
import string
import logging
import os.path
import numpy as np
from tqdm import tqdm

from funasr_detach.register import tables
from funasr_detach.utils.load_utils import load_bytes
from funasr_detach.download.file import download_from_url
from funasr_detach.download.download_from_hub import download_model
from funasr_detach.utils.vad_utils import slice_padding_audio_samples
from funasr_detach.train_utils.set_all_random_seed import set_all_random_seed
from funasr_detach.train_utils.load_pretrained_model import load_pretrained_model
from funasr_detach.utils.load_utils import load_audio_text_image_video
from funasr_detach.utils.timestamp_tools import timestamp_sentence
from funasr_detach.models.campplus.utils import sv_chunk, postprocess, distribute_spk

try:
    from funasr_detach.models.campplus.cluster_backend import ClusterBackend
except:
    print("If you want to use the speaker diarization, please `pip install hdbscan`")


def prepare_data_iterator(data_in, input_len=None, data_type=None, key=None):
    """

    :param input:
    :param input_len:
    :param data_type:
    :param frontend:
    :return:
    """
    data_list = []
    key_list = []
    filelist = [".scp", ".txt", ".json", ".jsonl"]

    chars = string.ascii_letters + string.digits
    if isinstance(data_in, str) and data_in.startswith("http"):  # url
        data_in = download_from_url(data_in)
    if isinstance(data_in, str) and os.path.exists(
        data_in
    ):  # wav_path; filelist: wav.scp, file.jsonl;text.txt;
        _, file_extension = os.path.splitext(data_in)
        file_extension = file_extension.lower()
        if file_extension in filelist:  # filelist: wav.scp, file.jsonl;text.txt;
            with open(data_in, encoding="utf-8") as fin:
                for line in fin:
                    key = "rand_key_" + "".join(random.choice(chars) for _ in range(13))
                    if data_in.endswith(
                        ".jsonl"
                    ):  # file.jsonl: json.dumps({"source": data})
                        lines = json.loads(line.strip())
                        data = lines["source"]
                        key = data["key"] if "key" in data else key
                    else:  # filelist, wav.scp, text.txt: id \t data or data
                        lines = line.strip().split(maxsplit=1)
                        data = lines[1] if len(lines) > 1 else lines[0]
                        key = lines[0] if len(lines) > 1 else key

                    data_list.append(data)
                    key_list.append(key)
        else:
            key = "rand_key_" + "".join(random.choice(chars) for _ in range(13))
            data_list = [data_in]
            key_list = [key]
    elif isinstance(data_in, (list, tuple)):
        if data_type is not None and isinstance(
            data_type, (list, tuple)
        ):  # mutiple inputs
            data_list_tmp = []
            for data_in_i, data_type_i in zip(data_in, data_type):
                key_list, data_list_i = prepare_data_iterator(
                    data_in=data_in_i, data_type=data_type_i
                )
                data_list_tmp.append(data_list_i)
            data_list = []
            for item in zip(*data_list_tmp):
                data_list.append(item)
        else:
            # [audio sample point, fbank, text]
            data_list = data_in
            key_list = [
                "rand_key_" + "".join(random.choice(chars) for _ in range(13))
                for _ in range(len(data_in))
            ]
    else:  # raw text; audio sample point, fbank; bytes
        if isinstance(data_in, bytes):  # audio bytes
            data_in = load_bytes(data_in)
        if key is None:
            key = "rand_key_" + "".join(random.choice(chars) for _ in range(13))
        data_list = [data_in]
        key_list = [key]

    return key_list, data_list


class AutoModel:

    def __init__(self, **kwargs):
        if not kwargs.get("disable_log", False):
            tables.print()

        model, kwargs = self.build_model(**kwargs)

        # if vad_model is not None, build vad model else None
        vad_model = kwargs.get("vad_model", None)
        vad_kwargs = kwargs.get("vad_model_revision", None)
        if vad_model is not None:
            logging.info("Building VAD model.")
            vad_kwargs = {
                "model": vad_model,
                "model_revision": vad_kwargs,
                "device": kwargs["device"],
            }
            vad_model, vad_kwargs = self.build_model(**vad_kwargs)

        # if punc_model is not None, build punc model else None
        punc_model = kwargs.get("punc_model", None)
        punc_kwargs = kwargs.get("punc_model_revision", None)
        if punc_model is not None:
            logging.info("Building punc model.")
            punc_kwargs = {
                "model": punc_model,
                "model_revision": punc_kwargs,
                "device": kwargs["device"],
            }
            punc_model, punc_kwargs = self.build_model(**punc_kwargs)

        # if spk_model is not None, build spk model else None
        spk_model = kwargs.get("spk_model", None)
        spk_kwargs = kwargs.get("spk_model_revision", None)
        if spk_model is not None:
            logging.info("Building SPK model.")
            spk_kwargs = {
                "model": spk_model,
                "model_revision": spk_kwargs,
                "device": kwargs["device"],
            }
            spk_model, spk_kwargs = self.build_model(**spk_kwargs)
            self.cb_model = ClusterBackend().to(kwargs["device"])
            spk_mode = kwargs.get("spk_mode", "punc_segment")
            if spk_mode not in ["default", "vad_segment", "punc_segment"]:
                logging.error(
                    "spk_mode should be one of default, vad_segment and punc_segment."
                )
            self.spk_mode = spk_mode

        self.kwargs = kwargs
        self.model = model
        self.vad_model = vad_model
        self.vad_kwargs = vad_kwargs
        self.punc_model = punc_model
        self.punc_kwargs = punc_kwargs
        self.spk_model = spk_model
        self.spk_kwargs = spk_kwargs
        self.model_path = kwargs.get("model_path")

    def build_model(self, **kwargs):
        assert "model" in kwargs
        if "model_conf" not in kwargs:
            logging.info(
                "download models from model hub: {}".format(
                    kwargs.get("model_hub", "ms")
                )
            )
            kwargs = download_model(**kwargs)

        set_all_random_seed(kwargs.get("seed", 0))

        device = kwargs.get("device", "cuda")
        if not torch.cuda.is_available() or kwargs.get("ngpu", 1) == 0:
            device = "cpu"
            kwargs["batch_size"] = 1
        kwargs["device"] = device

        if kwargs.get("ncpu", None):
            torch.set_num_threads(kwargs.get("ncpu"))

        # build tokenizer
        tokenizer = kwargs.get("tokenizer", None)
        if tokenizer is not None:
            tokenizer_class = tables.tokenizer_classes.get(tokenizer)
            tokenizer = tokenizer_class(**kwargs["tokenizer_conf"])
            kwargs["tokenizer"] = tokenizer
            kwargs["token_list"] = tokenizer.token_list
            vocab_size = len(tokenizer.token_list)
        else:
            vocab_size = -1

        # build frontend
        frontend = kwargs.get("frontend", None)
        if frontend is not None:
            frontend_class = tables.frontend_classes.get(frontend)
            frontend = frontend_class(**kwargs["frontend_conf"])
            kwargs["frontend"] = frontend
            kwargs["input_size"] = frontend.output_size()

        # build model
        model_class = tables.model_classes.get(kwargs["model"])
        model = model_class(**kwargs, **kwargs["model_conf"], vocab_size=vocab_size)

        model.to(device)

        # init_param
        init_param = kwargs.get("init_param", None)
        if init_param is not None:
            logging.info(f"Loading pretrained params from {init_param}")
            load_pretrained_model(
                model=model,
                path=init_param,
                ignore_init_mismatch=kwargs.get("ignore_init_mismatch", False),
                oss_bucket=kwargs.get("oss_bucket", None),
                scope_map=kwargs.get("scope_map", None),
                excludes=kwargs.get("excludes", None),
            )

        return model, kwargs

    def __call__(self, *args, **cfg):
        kwargs = self.kwargs
        kwargs.update(cfg)
        res = self.model(*args, kwargs)
        return res

    def generate(self, input, input_len=None, **cfg):
        if self.vad_model is None:
            return self.inference(input, input_len=input_len, **cfg)

        else:
            return self.inference_with_vad(input, input_len=input_len, **cfg)

    def inference(
        self, input, input_len=None, model=None, kwargs=None, key=None, **cfg
    ):
        kwargs = self.kwargs if kwargs is None else kwargs
        kwargs.update(cfg)
        model = self.model if model is None else model
        model = model.cuda()
        model.eval()

        batch_size = kwargs.get("batch_size", 1)
        # if kwargs.get("device", "cpu") == "cpu":
        #     batch_size = 1

        key_list, data_list = prepare_data_iterator(
            input, input_len=input_len, data_type=kwargs.get("data_type", None), key=key
        )

        speed_stats = {}
        asr_result_list = []
        num_samples = len(data_list)
        disable_pbar = kwargs.get("disable_pbar", False)
        pbar = (
            tqdm(colour="blue", total=num_samples, dynamic_ncols=True)
            if not disable_pbar
            else None
        )
        time_speech_total = 0.0
        time_escape_total = 0.0
        for beg_idx in range(0, num_samples, batch_size):
            end_idx = min(num_samples, beg_idx + batch_size)
            data_batch = data_list[beg_idx:end_idx]
            key_batch = key_list[beg_idx:end_idx]
            batch = {"data_in": data_batch, "key": key_batch}
            if (end_idx - beg_idx) == 1 and kwargs.get(
                "data_type", None
            ) == "fbank":  # fbank
                batch["data_in"] = data_batch[0]
                batch["data_lengths"] = input_len

            time1 = time.perf_counter()
            with torch.no_grad():
                results, meta_data = model.inference(**batch, **kwargs)
            time2 = time.perf_counter()

            asr_result_list.extend(results)

            # batch_data_time = time_per_frame_s * data_batch_i["speech_lengths"].sum().item()
            batch_data_time = meta_data.get("batch_data_time", -1)
            time_escape = time2 - time1
            speed_stats["load_data"] = meta_data.get("load_data", 0.0)
            speed_stats["extract_feat"] = meta_data.get("extract_feat", 0.0)
            speed_stats["forward"] = f"{time_escape:0.3f}"
            speed_stats["batch_size"] = f"{len(results)}"
            speed_stats["time_cost"] = f"{(time_escape)}"
            speed_stats["rtf"] = f"{(time_escape) / batch_data_time:0.3f}"
            description = f"{speed_stats}, "
            if pbar:
                pbar.update(1)
                pbar.set_description(description)
            time_speech_total += batch_data_time
            time_escape_total += time_escape

        if pbar:
            # pbar.update(1)
            pbar.set_description(f"rtf_avg: {time_escape_total/time_speech_total:0.3f}")
        torch.cuda.empty_cache()
        return asr_result_list

    def inference_with_vad(self, input, input_len=None, **cfg):

        # step.1: compute the vad model
        self.vad_kwargs.update(cfg)
        beg_vad = time.time()
        res = self.inference(
            input,
            input_len=input_len,
            model=self.vad_model,
            kwargs=self.vad_kwargs,
            **cfg,
        )
        end_vad = time.time()
        print(f"time cost vad: {end_vad - beg_vad:0.3f}")

        # step.2 compute asr model
        model = self.model
        kwargs = self.kwargs
        kwargs.update(cfg)
        batch_size = int(kwargs.get("batch_size_s", 300)) * 1000
        batch_size_threshold_ms = int(kwargs.get("batch_size_threshold_s", 60)) * 1000
        kwargs["batch_size"] = batch_size

        key_list, data_list = prepare_data_iterator(
            input, input_len=input_len, data_type=kwargs.get("data_type", None)
        )
        results_ret_list = []
        time_speech_total_all_samples = 1e-6

        beg_total = time.time()
        pbar_total = tqdm(colour="red", total=len(res), dynamic_ncols=True)
        for i in range(len(res)):
            key = res[i]["key"]
            vadsegments = res[i]["value"]
            input_i = data_list[i]
            speech = load_audio_text_image_video(
                input_i, fs=kwargs["frontend"].fs, audio_fs=kwargs.get("fs", 16000)
            )
            speech_lengths = len(speech)
            n = len(vadsegments)
            data_with_index = [(vadsegments[i], i) for i in range(n)]
            sorted_data = sorted(data_with_index, key=lambda x: x[0][1] - x[0][0])
            results_sorted = []

            if not len(sorted_data):
                logging.info("decoding, utt: {}, empty speech".format(key))
                continue

            if len(sorted_data) > 0 and len(sorted_data[0]) > 0:
                batch_size = max(
                    batch_size, sorted_data[0][0][1] - sorted_data[0][0][0]
                )

            batch_size_ms_cum = 0
            beg_idx = 0
            beg_asr_total = time.time()
            time_speech_total_per_sample = speech_lengths / 16000
            time_speech_total_all_samples += time_speech_total_per_sample

            all_segments = []
            for j, _ in enumerate(range(0, n)):
                # pbar_sample.update(1)
                batch_size_ms_cum += sorted_data[j][0][1] - sorted_data[j][0][0]
                if (
                    j < n - 1
                    and (
                        batch_size_ms_cum
                        + sorted_data[j + 1][0][1]
                        - sorted_data[j + 1][0][0]
                    )
                    < batch_size
                    and (sorted_data[j + 1][0][1] - sorted_data[j + 1][0][0])
                    < batch_size_threshold_ms
                ):
                    continue
                batch_size_ms_cum = 0
                end_idx = j + 1
                speech_j, speech_lengths_j = slice_padding_audio_samples(
                    speech, speech_lengths, sorted_data[beg_idx:end_idx]
                )
                results = self.inference(
                    speech_j,
                    input_len=None,
                    model=model,
                    kwargs=kwargs,
                    disable_pbar=True,
                    **cfg,
                )
                if self.spk_model is not None:
                    # compose vad segments: [[start_time_sec, end_time_sec, speech], [...]]
                    for _b in range(len(speech_j)):
                        vad_segments = [
                            [
                                sorted_data[beg_idx:end_idx][_b][0][0] / 1000.0,
                                sorted_data[beg_idx:end_idx][_b][0][1] / 1000.0,
                                np.array(speech_j[_b]),
                            ]
                        ]
                        segments = sv_chunk(vad_segments)
                        all_segments.extend(segments)
                        speech_b = [i[2] for i in segments]
                        spk_res = self.inference(
                            speech_b,
                            input_len=None,
                            model=self.spk_model,
                            kwargs=kwargs,
                            disable_pbar=True,
                            **cfg,
                        )
                        results[_b]["spk_embedding"] = spk_res[0]["spk_embedding"]
                beg_idx = end_idx
                if len(results) < 1:
                    continue
                results_sorted.extend(results)

            restored_data = [0] * n
            for j in range(n):
                index = sorted_data[j][1]
                restored_data[index] = results_sorted[j]
            result = {}

            # results combine for texts, timestamps, speaker embeddings and others
            # TODO: rewrite for clean code
            for j in range(n):
                for k, v in restored_data[j].items():
                    if k.startswith("timestamp"):
                        if k not in result:
                            result[k] = []
                        for t in restored_data[j][k]:
                            t[0] += vadsegments[j][0]
                            t[1] += vadsegments[j][0]
                        result[k].extend(restored_data[j][k])
                    elif k == "spk_embedding":
                        if k not in result:
                            result[k] = restored_data[j][k]
                        else:
                            result[k] = torch.cat(
                                [result[k], restored_data[j][k]], dim=0
                            )
                    elif "text" in k:
                        if k not in result:
                            result[k] = restored_data[j][k]
                        else:
                            result[k] += " " + restored_data[j][k]
                    else:
                        if k not in result:
                            result[k] = restored_data[j][k]
                        else:
                            result[k] += restored_data[j][k]

            return_raw_text = kwargs.get("return_raw_text", False)
            # step.3 compute punc model
            if self.punc_model is not None:
                self.punc_kwargs.update(cfg)
                punc_res = self.inference(
                    result["text"],
                    model=self.punc_model,
                    kwargs=self.punc_kwargs,
                    disable_pbar=True,
                    **cfg,
                )
                raw_text = copy.copy(result["text"])
                if return_raw_text:
                    result["raw_text"] = raw_text
                result["text"] = punc_res[0]["text"]
            else:
                raw_text = None

            # speaker embedding cluster after resorted
            if self.spk_model is not None and kwargs.get("return_spk_res", True):
                if raw_text is None:
                    logging.error("Missing punc_model, which is required by spk_model.")
                all_segments = sorted(all_segments, key=lambda x: x[0])
                spk_embedding = result["spk_embedding"]
                labels = self.cb_model(
                    spk_embedding.cpu(), oracle_num=kwargs.get("preset_spk_num", None)
                )
                # del result['spk_embedding']
                sv_output = postprocess(all_segments, None, labels, spk_embedding.cpu())
                if self.spk_mode == "vad_segment":  # recover sentence_list
                    sentence_list = []
                    for res, vadsegment in zip(restored_data, vadsegments):
                        if "timestamp" not in res:
                            logging.error(
                                "Only 'iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch' \
                                           and 'iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch'\
                                           can predict timestamp, and speaker diarization relies on timestamps."
                            )
                        sentence_list.append(
                            {
                                "start": vadsegment[0],
                                "end": vadsegment[1],
                                "sentence": res["text"],
                                "timestamp": res["timestamp"],
                            }
                        )
                elif self.spk_mode == "punc_segment":
                    if "timestamp" not in result:
                        logging.error(
                            "Only 'iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch' \
                                       and 'iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch'\
                                       can predict timestamp, and speaker diarization relies on timestamps."
                        )
                    sentence_list = timestamp_sentence(
                        punc_res[0]["punc_array"],
                        result["timestamp"],
                        raw_text,
                        return_raw_text=return_raw_text,
                    )
                distribute_spk(sentence_list, sv_output)
                result["sentence_info"] = sentence_list
            elif kwargs.get("sentence_timestamp", False):
                sentence_list = timestamp_sentence(
                    punc_res[0]["punc_array"],
                    result["timestamp"],
                    raw_text,
                    return_raw_text=return_raw_text,
                )
                result["sentence_info"] = sentence_list
            if "spk_embedding" in result:
                del result["spk_embedding"]

            result["key"] = key
            results_ret_list.append(result)
            end_asr_total = time.time()
            time_escape_total_per_sample = end_asr_total - beg_asr_total
            pbar_total.update(1)
            pbar_total.set_description(
                f"rtf_avg: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, "
                f"time_speech: {time_speech_total_per_sample: 0.3f}, "
                f"time_escape: {time_escape_total_per_sample:0.3f}"
            )

        return results_ret_list

    def infer_encoder(
        self, input, input_len=None, model=None, kwargs=None, key=None, **cfg
    ):
        kwargs = self.kwargs if kwargs is None else kwargs
        kwargs.update(cfg)
        model = self.model if model is None else model
        model = model.cuda()
        model.eval()

        batch_size = kwargs.get("batch_size", 1)

        key_list, data_list = prepare_data_iterator(
            input, input_len=input_len, data_type=kwargs.get("data_type", None), key=key
        )

        asr_result_list = []
        num_samples = len(data_list)
        for beg_idx in range(0, num_samples, batch_size):
            end_idx = min(num_samples, beg_idx + batch_size)
            data_batch = data_list[beg_idx:end_idx]
            key_batch = key_list[beg_idx:end_idx]
            batch = {"data_in": data_batch, "key": key_batch}
            if (end_idx - beg_idx) == 1 and kwargs.get(
                "data_type", None
            ) == "fbank":  # fbank
                batch["data_in"] = data_batch[0]
                batch["data_lengths"] = input_len

            with torch.no_grad():
                results, meta_data, cache = model.infer_encoder(**batch, **kwargs)
            asr_result_list.extend(results)

        torch.cuda.empty_cache()
        return asr_result_list, cache