Spaces:
Running
on
T4
Running
on
T4
File size: 1,245 Bytes
4300fed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
from . import chinese, japanese, english, chinese_mix, korean, french, spanish
from . import cleaned_text_to_sequence
import copy
language_module_map = {"ZH": chinese, "JP": japanese, "EN": english, 'ZH_MIX_EN': chinese_mix, 'KR': korean,
'FR': french, 'SP': spanish, 'ES': spanish}
def clean_text(text, language):
language_module = language_module_map[language]
norm_text = language_module.text_normalize(text)
phones, tones, word2ph = language_module.g2p(norm_text)
return norm_text, phones, tones, word2ph
def clean_text_bert(text, language, device=None):
language_module = language_module_map[language]
norm_text = language_module.text_normalize(text)
phones, tones, word2ph = language_module.g2p(norm_text)
word2ph_bak = copy.deepcopy(word2ph)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = language_module.get_bert_feature(norm_text, word2ph, device=device)
return norm_text, phones, tones, word2ph_bak, bert
def text_to_sequence(text, language):
norm_text, phones, tones, word2ph = clean_text(text, language)
return cleaned_text_to_sequence(phones, tones, language)
if __name__ == "__main__":
pass |