File size: 1,449 Bytes
4ef7343
2a768ff
 
35bb005
268facb
35bb005
 
 
2a768ff
 
 
 
 
35bb005
2a768ff
1977741
35bb005
 
 
2a768ff
 
 
35bb005
2a768ff
 
 
 
 
 
35bb005
2a768ff
 
9bdf0ae
 
2a768ff
 
 
35bb005
2a768ff
 
 
 
00e4e84
266c60c
 
 
2a768ff
9bdf0ae
 
2a768ff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
import gradio as gr
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
import spaces

# Check if GPU is available
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load the pipeline
pipeline = StableVideoDiffusionPipeline.from_pretrained(
    "stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
)
pipeline.to(device)

@spaces.GPU(duration=120)
def generate_video(image_path, seed):
    # Load and preprocess the image
    image = load_image(image_path)
    image = image.resize((1024, 576))

    # Set the generator seed
    generator = torch.Generator(device=device).manual_seed(seed)

    # Generate the video frames
    frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0]

    # Export the frames to a video file
    output_video_path = "generated.mp4"
    export_to_video(frames, output_video_path, fps=7)

    return output_video_path

# Create the Gradio interface
iface = gr.Interface(
    fn=generate_video,
    inputs=[
        gr.Image(type="filepath", label="Upload Image"),
        gr.Number(label="Seed", value=42)
    ],
    outputs=gr.Video(label="Generated Video"),
    title="Stable Video Diffusion",
    description="Generate a video from an uploaded image using Stable Video Diffusion.",
    examples=[
        ["image.png", "generated.mp4"]
    ]
)

# Launch the interface
iface.launch()