File size: 5,329 Bytes
e547b24
 
 
 
 
 
 
 
 
 
 
 
4a22dd6
e547b24
 
 
 
119e558
 
 
e547b24
 
 
 
9be63af
e547b24
 
119e558
e547b24
6f5a32e
e547b24
119e558
e547b24
6f5a32e
e547b24
119e558
e547b24
 
 
 
 
 
119e558
 
 
 
 
e547b24
 
119e558
e547b24
 
6f5a32e
 
e547b24
 
 
 
 
119e558
e547b24
 
6f5a32e
e547b24
 
6f5a32e
e547b24
 
119e558
e547b24
02f8cfa
119e558
02f8cfa
 
73f7edc
e547b24
 
119e558
02f8cfa
119e558
51b29ed
119e558
 
02f8cfa
119e558
02f8cfa
 
 
bc84ac0
119e558
 
02f8cfa
 
bc84ac0
119e558
dda250d
 
4a22dd6
02f8cfa
 
119e558
 
e547b24
119e558
02f8cfa
 
119e558
 
02f8cfa
 
e547b24
119e558
 
e547b24
119e558
06ca9b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image
from deep_translator import GoogleTranslator
import json

# Project by Nymbo

API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100

# Function to query the API and return the generated image
def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024):
    if prompt == "" or prompt is None:
        return None

    key = random.randint(0, 999)
    
    API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    
    # Translate the prompt from Russian to English if necessary
    prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')

    # Add some extra flair to the prompt
    prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mGeneration {key}:\033[0m {prompt}')
    
    # Prepare the payload for the API call, including width and height
    payload = {
        "inputs": prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed != -1 else random.randint(1, 1000000000),
        "strength": strength,
        "parameters": {
            "width": width,  # Pass the width to the API
            "height": height  # Pass the height to the API
        }
    }

    # Send the request to the API and handle the response
    response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Error: Failed to get image. Response status: {response.status_code}")
        print(f"Response content: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")
    
    try:
        # Convert the response content into an image
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
        return image
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None

# CSS to style the app
css = """
#app-container {
    max-width: 800px;
    margin-left: auto;
    margin-right: auto;
}
"""

# Build the Gradio UI with Blocks
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
    # Add a title to the app
    gr.HTML("<center><h1>Womener AI Image Generator</h1></center>")
    
    # Container for all the UI elements
    with gr.Column(elem_id="app-container"):
        # Add a text input for the main prompt
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
                
                # Accordion for advanced settings
                with gr.Row():
                    with gr.Accordion("Advanced Settings", open=False):
                        negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
                        with gr.Row():
                            width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1280, step=32)
                            height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1280, step=32)
                        steps = gr.Slider(label="Sampling steps", value=4, minimum=1, maximum=100, step=1)
                        cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
                        strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
                        seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) # Setting the seed to -1 will make it random
                        method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])

        # Add a button to trigger the image generation
        with gr.Row():
            text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
        
        # Image output area to display the generated image
        with gr.Row():
            image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
        
        # Bind the button to the query function with the added width and height inputs
        text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output)

# Launch the Gradio app
app.launch(show_api=False, share=False)