File size: 14,041 Bytes
da89f1c 6cf4c1f f292cd1 da89f1c f292cd1 6cf4c1f f292cd1 da89f1c cb428cb da89f1c cb428cb da89f1c cb428cb f292cd1 cb428cb f292cd1 cb428cb f292cd1 cb428cb f292cd1 cb428cb f292cd1 cb428cb da89f1c cb428cb 80b78df cb428cb f292cd1 cb428cb da89f1c cb428cb d26ac21 cb428cb da89f1c d26ac21 da89f1c 99575b1 da89f1c bad72d7 da89f1c cb428cb 6cf4c1f cb428cb da89f1c f292cd1 bad72d7 99575b1 f292cd1 bad72d7 f292cd1 6e2887d da89f1c 80b78df da89f1c bad72d7 da89f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import ReduceLROnPlateau
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
import numpy as np
import time
from tqdm import tqdm
import logging
import os
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class Trainer:
"""
Improved trainer class with techniques from Hedwig implementation
to get better performance on document classification tasks
"""
def __init__(
self,
model,
train_loader,
val_loader,
test_loader=None,
lr=2e-5,
weight_decay=0.01,
warmup_proportion=0.1,
gradient_accumulation_steps=1,
max_grad_norm=1.0,
num_classes=2,
num_categories=1,
device=None
):
self.model = model
self.train_loader = train_loader
self.val_loader = val_loader
self.test_loader = test_loader
self.device = device if device else torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info(f"Using device: {self.device}")
self.model.to(self.device)
# Total number of training steps
self.num_training_steps = len(train_loader) * gradient_accumulation_steps
# Optimizer with weight decay (L2 regularization)
# Using different learning rates for BERT and classifier
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
'weight_decay': 0.0}
]
self.optimizer = optim.AdamW(optimizer_grouped_parameters, lr=lr)
# Learning rate scheduler
self.scheduler = ReduceLROnPlateau(self.optimizer, mode='max', factor=0.5, patience=2, verbose=True)
# Loss function with label smoothing for better generalization
self.criterion = nn.CrossEntropyLoss()
# Training parameters
self.gradient_accumulation_steps = gradient_accumulation_steps
self.max_grad_norm = max_grad_norm
# For tracking metrics
self.best_val_f1 = 0.0
self.best_model_state = None
self.num_classes = num_classes # Number of classes for classification
# For training if using multiple categories (e.g., multiple sentiment classes, there can be multiple sentiment in one document)
self.num_categories = num_categories
def train(self, epochs, save_path='best_model.pth'):
"""
Training loop with improved techniques
"""
logger.info(f"Starting training for {epochs} epochs")
for epoch in range(epochs):
start_time = time.time()
# Training phase
self.model.train()
train_loss = 0
all_predictions = []
all_labels = []
# Progress bar for training
train_iterator = tqdm(self.train_loader, desc=f"Epoch {epoch+1}/{epochs} [Train]")
for i, batch in enumerate(train_iterator):
# Move batch to device
input_ids = batch['input_ids'].to(self.device)
attention_mask = batch['attention_mask'].to(self.device)
token_type_ids = batch['token_type_ids'].to(self.device)
labels = batch['label'].to(self.device)
# Forward pass
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids
)
# Calculate loss
if self.num_categories > 1:
total_loss = 0
for i in range(self.num_categories):
start_idx = i * self.num_classes
end_idx = (i + 1) * self.num_classes
category_outputs = outputs[:, start_idx:end_idx] # Shape (batch, num_classes)
category_labels = labels[:, i] # Shape (batch)
# Ensure category_labels are in [0, self.num_classes - 1]
if category_labels.max() >= self.num_classes or category_labels.min() < 0:
print(f"ERROR: Category {i} labels out of range [0, {self.num_classes - 1}]: min={category_labels.min()}, max={category_labels.max()}")
total_loss += self.criterion(category_outputs, category_labels)
loss = total_loss / self.num_categories # Average loss
else:
loss = self.criterion(outputs, labels)
# Scale loss if using gradient accumulation
if self.gradient_accumulation_steps > 1:
loss = loss / self.gradient_accumulation_steps
# Backward pass
loss.backward()
# Update weights if we've accumulated enough gradients
if (i + 1) % self.gradient_accumulation_steps == 0:
# Gradient clipping to prevent exploding gradients
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
self.optimizer.step()
self.optimizer.zero_grad()
train_loss += loss.item() * self.gradient_accumulation_steps
# Get predictions for metrics
if self.num_categories > 1:
batch_size, total_classes = outputs.shape
if total_classes % self.num_categories != 0:
raise ValueError(f"Error: Number of total classes in the batch must of divisible by {self.num_categories}")
classes_per_group = total_classes // self.num_categories
# Group every classes_per_group values along dim=1
reshaped = outputs.view(outputs.size(0), -1, classes_per_group) # shape: (batch, self., classes_per_group)
# Argmax over each group of classes_per_group
preds = reshaped.argmax(dim=-1)
else:
_, preds = torch.max(outputs, dim=1)
all_predictions.extend(preds.cpu().tolist())
all_labels.extend(labels.cpu().tolist())
# Update progress bar with current loss
train_iterator.set_postfix({'loss': f"{loss.item():.4f}"})
# Calculate training metrics
train_loss /= len(self.train_loader)
if self.num_categories > 1:
# Flatten the list of predictions and labels
all_predictions = np.concatenate(all_predictions)
all_labels = np.concatenate(all_labels)
train_acc = accuracy_score(all_labels, all_predictions)
train_f1 = f1_score(all_labels, all_predictions, average='macro')
else:
train_acc = accuracy_score(all_labels, all_predictions)
train_f1 = f1_score(all_labels, all_predictions, average='macro')
# Validation phase
val_loss, val_acc, val_f1, val_precision, val_recall = self.evaluate(self.val_loader, "Validation")
# Log validation metrics
logger.info(f"Validation - Loss: {val_loss:.4f}, Acc: {val_acc:.4f}, F1: {val_f1:.4f}, "
f"Precision: {val_precision:.4f}, Recall: {val_recall:.4f}")
# Adjust learning rate based on validation performance
self.scheduler.step(val_f1)
# Save best model
if val_f1 > self.best_val_f1:
self.best_val_f1 = val_f1
self.best_model_state = self.model.state_dict().copy()
torch.save(self.model.state_dict(), save_path)
logger.info(f"New best model saved with validation F1: {val_f1:.4f}")
# Print epoch summary
epoch_time = time.time() - start_time
logger.info(f"Epoch {epoch+1}/{epochs} - "
f"Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.4f}, Train F1: {train_f1:.4f}, "
f"Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.4f}, Val F1: {val_f1:.4f}, "
f"Time: {epoch_time:.2f}s")
print(f"Epoch {epoch+1}/{epochs} - ",
f"Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.4f}, Train F1: {train_f1:.4f}, ",
f"Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.4f}, Val F1: {val_f1:.4f}, ",
f"Time: {epoch_time:.2f}s")
# Load best model for final evaluation
if self.best_model_state is not None:
self.model.load_state_dict(self.best_model_state)
logger.info(f"Loaded best model with validation F1: {self.best_val_f1:.4f}")
# Test evaluation if test loader provided
if self.test_loader:
test_loss, test_acc, test_f1, test_precision, test_recall = self.evaluate(self.test_loader, "Test")
logger.info(f"Final test results - "
f"Loss: {test_loss:.4f}, Acc: {test_acc:.4f}, F1: {test_f1:.4f}, "
f"Precision: {test_precision:.4f}, Recall: {test_recall:.4f}")
print(f"Final test results - ",
f"Loss: {test_loss:.4f}, Acc: {test_acc:.4f}, F1: {test_f1:.4f}, ",
f"Precision: {test_precision:.4f}, Recall: {test_recall:.4f}")
def evaluate(self, data_loader, phase="Validation", threshold=0.55):
"""
Evaluation function for both validation and test sets
"""
self.model.eval()
eval_loss = 0
all_predictions = np.array([], dtype=int)
all_labels = np.array([], dtype=int)
# No gradient computation during evaluation
with torch.no_grad():
# Progress bar for evaluation
iterator = tqdm(data_loader, desc=f"[{phase}]")
for batch in iterator:
# Move batch to device
input_ids = batch['input_ids'].to(self.device)
attention_mask = batch['attention_mask'].to(self.device)
token_type_ids = batch['token_type_ids'].to(self.device)
labels = batch['label'].to(self.device)
# Forward pass
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids
)
# Calculate loss
if self.num_categories > 1:
total_loss = 0
for i in range(self.num_categories):
start_idx = i * self.num_classes
end_idx = (i + 1) * self.num_classes
category_outputs = outputs[:, start_idx:end_idx] # Shape (batch, num_classes)
category_labels = labels[:, i] # Shape (batch)
# Ensure category_labels are in [0, self.num_classes - 1]
if category_labels.max() >= self.num_classes or category_labels.min() < 0:
print(f"ERROR: Category {i} labels out of range [0, {self.num_classes - 1}]: min={category_labels.min()}, max={category_labels.max()}")
total_loss += self.criterion(category_outputs, category_labels)
loss = total_loss / self.num_categories # Average loss
else:
loss = self.criterion(outputs, labels)
eval_loss += loss.item()
# Get predictions
# Get predictions for metrics
if self.num_categories > 1:
batch_size, total_classes = outputs.shape
if total_classes % self.num_categories != 0:
raise ValueError(f"Error: Number of total classes in the batch must of divisible by {self.num_categories}")
classes_per_group = total_classes // self.num_categories
# Group every classes_per_group values along dim=1
reshaped = outputs.view(outputs.size(0), -1, classes_per_group) # shape: (batch, self., classes_per_group)
# Softmax and apply threshold
probs = torch.softmax(reshaped, dim=1)
probs = torch.where(probs > threshold, probs, 0.0)
# Argmax over each group of classes_per_group
preds = probs.argmax(dim=-1)
else:
_, preds = torch.max(outputs, dim=1)
all_predictions = np.append(all_predictions, preds.cpu().tolist())
all_labels = np.append(all_labels, labels.cpu().tolist())
# Calculate metrics
eval_loss /= len(data_loader)
accuracy = accuracy_score(all_labels, all_predictions)
f1 = f1_score(all_labels, all_predictions, average='weighted')
precision = precision_score(all_labels, all_predictions, average='weighted', zero_division=0)
recall = recall_score(all_labels, all_predictions, average='weighted', zero_division=0)
return eval_loss, accuracy, f1, precision, recall |