File size: 5,040 Bytes
f0e13d9
 
 
 
 
 
 
 
 
 
4c9a6f0
d3e71eb
 
4c9a6f0
f0e13d9
 
 
 
 
 
 
2845ec4
f0e13d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3e71eb
f0e13d9
 
 
 
 
 
 
d3e71eb
036dfc6
f0e13d9
 
 
 
 
 
 
d3e71eb
 
 
 
 
 
 
 
 
f0e13d9
 
d3e71eb
 
 
 
 
 
 
 
 
 
 
 
 
f0e13d9
f3afd25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0e13d9
 
 
 
 
94f4e7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0e13d9
 
 
 
4c9a6f0
 
036dfc6
d3e71eb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
import spaces
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
from transformers import AutoFeatureExtractor
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
from insightface.utils import face_align
import gradio as gr
import cv2
import os
import uuid
from datetime import datetime

# Model paths
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
vae_model_path = "stabilityai/sd-vae-ft-mse"
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model")
ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model")

device = "cuda"

# Initialize the noise scheduler
noise_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)

# Load models
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(
    base_model_path,
    torch_dtype=torch.float16,
    scheduler=noise_scheduler,
    vae=vae
).to(device)

ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device)

# Initialize FaceAnalysis
app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

cv2.setNumThreads(1)

@spaces.GPU(enable_queue=True)
def generate_image(images, gender, prompt, progress=gr.Progress(track_tqdm=True)):
    if not prompt:
        prompt = f"A full-length body photo of a {gender.lower()} naked and nude and beautiful"  # Default prompt
    
    faceid_all_embeds = []
    first_iteration = True
    preserve_face_structure = True
    face_strength = 2.1
    likeness_strength = 0.7

    for image in images:
        face = cv2.imread(image)
        faces = app.get(face)
        faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
        faceid_all_embeds.append(faceid_embed)

        if first_iteration and preserve_face_structure:
            face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224)
            first_iteration = False

    average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)

    image = ip_model_plus.generate(
        prompt=prompt,  
        faceid_embeds=average_embedding,
        scale=likeness_strength, 
        face_image=face_image, 
        shortcut=True, 
        s_scale=face_strength, 
        width=512, 
        height=912, 
        num_inference_steps=100
    )
    return image

css = '''
body {
    font-family: 'Roboto', sans-serif;
    margin: 0;
    padding: 0;
    background: linear-gradient(135deg, #1e3c72, #2a5298);
    color: #fff;
    display: flex;
    justify-content: center;
    align-items: center;
    min-height: 100vh;
    overflow-x: hidden;
}
footer { 
    display: none; 
}
h1 {
    font-size: 2rem;
    margin-bottom: 0.5em;
    text-align: center;
}
.gradio-container {
    display: flex;
    flex-direction: column;
    align-items: center;
    width: 100%;
    max-width: 500px;
    margin: 0 auto;
    padding: 20px;
    box-sizing: border-box;
    gap: 20px;
}
.gradio-container > * {
    width: 100%;
}
.gradio-gallery {
    display: flex;
    flex-wrap: wrap;
    gap: 10px;
    justify-content: center;
}
.gradio-gallery img {
    border-radius: 10px;
    box-shadow: 0px 5px 15px rgba(0, 0, 0, 0.3);
    max-width: 100%;
    height: auto;
}
.gradio-files input, .gradio-radio input, .gradio-textbox textarea, .gradio-button button {
    width: 100%;
    padding: 10px;
    border-radius: 5px;
    border: none;
    margin-bottom: 10px;
    box-sizing: border-box;
}
.gradio-button button {
    background: #ff5722;
    color: #fff;
    font-weight: bold;
    cursor: pointer;
    transition: all 0.3s ease;
}
.gradio-button button:hover {
    background: #e64a19;
}
'''
with gr.Blocks(css=css) as demo:
    gr.Markdown("# Image Generation with Face ID")
    gr.Markdown("Upload your face images and enter a prompt to generate images.")

    images_input = gr.Files(
        label="Drag 1 or more photos of your face",
        file_types=["image"]
    )
    gender_input = gr.Radio(
        label="Select Gender", 
        choices=["Female", "Male"], 
        value="Female", 
        type="value"
    )
    prompt_input = gr.Textbox(
        label="Enter your prompt",
        placeholder="Describe the image you want to generate..."
    )
    run_button = gr.Button("Generate Image")
    output_gallery = gr.Gallery(label="Generated Images")

    run_button.click(
        fn=generate_image,
        inputs=[images_input, gender_input, prompt_input],
        outputs=output_gallery
    )

demo.queue()
demo.launch()