File size: 1,675 Bytes
09481f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Copyright 2019 Shigeki Karita
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Subsampling layer definition."""

import torch


class Conv2dSubsampling(torch.nn.Module):
    """Convolutional 2D subsampling (to 1/4 length).

    :param int idim: input dim
    :param int odim: output dim
    :param flaot dropout_rate: dropout rate
    :param nn.Module pos_enc_class: positional encoding layer

    """

    def __init__(self, idim, odim, dropout_rate, pos_enc_class):
        """Construct an Conv2dSubsampling object."""
        super(Conv2dSubsampling, self).__init__()
        self.conv = torch.nn.Sequential(
            torch.nn.Conv2d(1, odim, 3, 2),
            torch.nn.ReLU(),
            torch.nn.Conv2d(odim, odim, 3, 2),
            torch.nn.ReLU(),
        )
        self.out = torch.nn.Sequential(
            torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim), pos_enc_class,
        )

    def forward(self, x, x_mask):
        """Subsample x.

        :param torch.Tensor x: input tensor
        :param torch.Tensor x_mask: input mask
        :return: subsampled x and mask
        :rtype Tuple[torch.Tensor, torch.Tensor]
               or Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor]
        """
        x = x.unsqueeze(1)  # (b, c, t, f)
        x = self.conv(x)
        b, c, t, f = x.size()
        # if RelPositionalEncoding, x: Tuple[torch.Tensor, torch.Tensor]
        # else x: torch.Tensor
        x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
        if x_mask is None:
            return x, None
        return x, x_mask[:, :, :-2:2][:, :, :-2:2]