Spaces:
Runtime error
Runtime error
File size: 13,924 Bytes
09481f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
<p align="center"><img width="160" src="doc/lip_white.png" alt="logo"></p>
<h1 align="center">Visual Speech Recognition for Multiple Languages</h1>
<div align="center">
[📘Introduction](#Introduction) |
[🛠️Preparation](#Preparation) |
[📊Benchmark](#Benchmark-evaluation) |
[🔮Inference](#Speech-prediction) |
[🐯Model zoo](#Model-Zoo) |
[📝License](#License)
</div>
## Authors
[Pingchuan Ma](https://mpc001.github.io/), [Alexandros Haliassos](https://dblp.org/pid/257/3052.html), [Adriana Fernandez-Lopez](https://scholar.google.com/citations?user=DiVeQHkAAAAJ), [Honglie Chen](https://scholar.google.com/citations?user=HPwdvwEAAAAJ), [Stavros Petridis](https://ibug.doc.ic.ac.uk/people/spetridis), [Maja Pantic](https://ibug.doc.ic.ac.uk/people/mpantic).
## Update
`2023-03-27`: We have released our AutoAVSR models for LRS3, see [here](#autoavsr-models).
## Introduction
This is the repository of [Auto-AVSR: Audio-Visual Speech Recognition with Automatic Labels](https://arxiv.org/abs/2303.14307) and [Visual Speech Recognition for Multiple Languages](https://arxiv.org/abs/2202.13084), which is the successor of [End-to-End Audio-Visual Speech Recognition with Conformers](https://arxiv.org/abs/2102.06657). By using this repository, you can achieve the performance of 19.1%, 1.0% and 0.9% WER for automatic, visual, and audio-visual speech recognition (ASR, VSR, and AV-ASR) on LRS3.
## Tutorial
We provide a tutorial [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1jfb6e4xxhXHbmQf-nncdLno1u0b4j614) to show how to use our Auto-AVSR models to perform speech recognition (ASR, VSR, and AV-ASR), crop mouth ROIs or extract visual speech features.
## Demo
English -> Mandarin -> Spanish | French -> Portuguese -> Italian |
:-------------------------------:|:------------------------------------:
<img src='doc/vsr_1.gif' title='vsr1' style='max-width:320px'></img> | <img src='doc/vsr_2.gif' title='vsr2' style='max-width:320px'></img> |
<div align="center">
[Youtube](https://youtu.be/FIau-6JA9Po) |
[Bilibili](https://www.bilibili.com/video/BV1Wu411D7oP)
</div>
## Preparation
1. Clone the repository and enter it locally:
```Shell
git clone https://github.com/mpc001/Visual_Speech_Recognition_for_Multiple_Languages
cd Visual_Speech_Recognition_for_Multiple_Languages
```
2. Setup the environment.
```Shell
conda create -y -n autoavsr python=3.8
conda activate autoavsr
```
3. Install pytorch, torchvision, and torchaudio by following instructions [here](https://pytorch.org/get-started/), and install all packages:
```Shell
pip install -r requirements.txt
conda install -c conda-forge ffmpeg
```
4. Download and extract a pre-trained model and/or language model from [model zoo](#Model-Zoo) to:
- `./benchmarks/${dataset}/models`
- `./benchmarks/${dataset}/language_models`
5. [For VSR and AV-ASR] Install [RetinaFace](./tools) or [MediaPipe](https://pypi.org/project/mediapipe/) tracker.
### Benchmark evaluation
```Shell
python eval.py config_filename=[config_filename] \
labels_filename=[labels_filename] \
data_dir=[data_dir] \
landmarks_dir=[landmarks_dir]
```
- `[config_filename]` is the model configuration path, located in `./configs`.
- `[labels_filename]` is the labels path, located in `${lipreading_root}/benchmarks/${dataset}/labels`.
- `[data_dir]` and `[landmarks_dir]` are the directories for original dataset and corresponding landmarks.
- `gpu_idx=-1` can be added to switch from `cuda:0` to `cpu`.
### Speech prediction
```Shell
python infer.py config_filename=[config_filename] data_filename=[data_filename]
```
- `data_filename` is the path to the audio/video file.
- `detector=mediapipe` can be added to switch from RetinaFace to MediaPipe tracker.
### Mouth ROIs cropping
```Shell
python crop_mouth.py data_filename=[data_filename] dst_filename=[dst_filename]
```
- `dst_filename` is the path where the cropped mouth will be saved.
## Model zoo
### Overview
We support a number of datasets for speech recognition:
- [x] [Lip Reading Sentences 2 (LRS2)](https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrs2.html)
- [x] [Lip Reading Sentences 3 (LRS3)](https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrs3.html)
- [x] [Chinese Mandarin Lip Reading (CMLR)](https://www.vipazoo.cn/CMLR.html)
- [x] [CMU Multimodal Opinion Sentiment, Emotions and Attributes (CMU-MOSEAS)](http://immortal.multicomp.cs.cmu.edu/cache/multilingual)
- [x] [GRID](http://spandh.dcs.shef.ac.uk/gridcorpus)
- [x] [Lombard GRID](http://spandh.dcs.shef.ac.uk/avlombard)
- [x] [TCD-TIMIT](https://sigmedia.tcd.ie)
### AutoAVSR models
<details open>
<summary>Lip Reading Sentences 3 (LRS3)</summary>
<p> </p>
| Components | WER | url | size (MB) |
|:----------------------|:----:|:---------------------------------------------------------------------------------------:|:-----------:|
| **Visual-only** |
| - | 19.1 |[GoogleDrive](http://bit.ly/40EAtyX) or [BaiduDrive](https://bit.ly/3ZjbrV5)(key: dqsy) | 891 |
| **Audio-only** |
| - | 1.0 |[GoogleDrive](http://bit.ly/3ZSdh0l) or [BaiduDrive](http://bit.ly/3Z1TlGU)(key: dvf2) | 860 |
| **Audio-visual** |
| - | 0.9 |[GoogleDrive](http://bit.ly/3yRSXAn) or [BaiduDrive](http://bit.ly/3LAxcMY)(key: sai5) | 1540 |
| **Language models** |
| - | - |[GoogleDrive](http://bit.ly/3FE4XsV) or [BaiduDrive](http://bit.ly/3yRI5SY)(key: t9ep) | 191 |
| **Landmarks** |
| - | - |[GoogleDrive](https://bit.ly/33rEsax) or [BaiduDrive](https://bit.ly/3rwQSph)(key: mi3c) | 18577 |
</details>
### VSR for multiple languages models
<details open>
<summary>Lip Reading Sentences 2 (LRS2)</summary>
<p> </p>
| Components | WER | url | size (MB) |
|:----------------------|:----:|:---------------------------------------------------------------------------------------:|:-----------:|
| **Visual-only** |
| - | 26.1 |[GoogleDrive](https://bit.ly/3I25zrH) or [BaiduDrive](https://bit.ly/3BAHBkH)(key: 48l1) | 186 |
| **Language models** |
| - | - |[GoogleDrive](https://bit.ly/3qzWKit) or [BaiduDrive](https://bit.ly/3KgAL7T)(key: 59u2) | 180 |
| **Landmarks** |
| - | - |[GoogleDrive](https://bit.ly/3jSMMoz) or [BaiduDrive](https://bit.ly/3BuIwBB)(key: 53rc) | 9358 |
</details>
<details open>
<summary>Lip Reading Sentences 3 (LRS3)</summary>
<p> </p>
| Components | WER | url | size (MB) |
|:----------------------|:----:|:---------------------------------------------------------------------------------------:|:-----------:|
| **Visual-only** |
| - | 32.3 |[GoogleDrive](https://bit.ly/3Bp4gjV) or [BaiduDrive](https://bit.ly/3rIzLCn)(key: 1b1s) | 186 |
| **Language models** |
| - | - |[GoogleDrive](https://bit.ly/3qzWKit) or [BaiduDrive](https://bit.ly/3KgAL7T)(key: 59u2) | 180 |
| **Landmarks** |
| - | - |[GoogleDrive](https://bit.ly/33rEsax) or [BaiduDrive](https://bit.ly/3rwQSph)(key: mi3c) | 18577 |
</details>
<details open>
<summary>Chinese Mandarin Lip Reading (CMLR)</summary>
<p> </p>
| Components | CER | url | size (MB) |
|:----------------------|:----:|:---------------------------------------------------------------------------------------:|:-----------:|
| **Visual-only** |
| - | 8.0 |[GoogleDrive](https://bit.ly/3fR8RkU) or [BaiduDrive](https://bit.ly/3IyACLB)(key: 7eq1) | 195 |
| **Language models** |
| - | - |[GoogleDrive](https://bit.ly/3fPxXAJ) or [BaiduDrive](https://bit.ly/3rEcErr)(key: k8iv) | 187 |
| **Landmarks** |
| - | - |[GoogleDrive](https://bit.ly/3bvetPL) or [BaiduDrive](https://bit.ly/3o2u53d)(key: 1ret) | 3721 |
</details>
<details open>
<summary>CMU Multimodal Opinion Sentiment, Emotions and Attributes (CMU-MOSEAS)</summary>
<p> </p>
| Components | WER | url | size (MB) |
|:----------------------|:----:|:---------------------------------------------------------------------------------------:|:-----------:|
| **Visual-only** |
| Spanish | 44.5 |[GoogleDrive](https://bit.ly/34MjWBW) or [BaiduDrive](https://bit.ly/33rMq3a)(key: m35h) | 186 |
| Portuguese | 51.4 |[GoogleDrive](https://bit.ly/3HjXCgo) or [BaiduDrive](https://bit.ly/3IqbbMg)(key: wk2h) | 186 |
| French | 58.6 |[GoogleDrive](https://bit.ly/3Ik6owb) or [BaiduDrive](https://bit.ly/35msiQG)(key: t1hf) | 186 |
| **Language models** |
| Spanish | - |[GoogleDrive](https://bit.ly/3rppyJN) or [BaiduDrive](https://bit.ly/3nA3wCN)(key: 0mii) | 180 |
| Portuguese | - |[GoogleDrive](https://bit.ly/3gPvneF) or [BaiduDrive](https://bit.ly/33vL8Es)(key: l6ag) | 179 |
| French | - |[GoogleDrive](https://bit.ly/3LDChSn) or [BaiduDrive](https://bit.ly/3sNnNql)(key: 6tan) | 179 |
| **Landmarks** |
| - | - |[GoogleDrive](https://bit.ly/34Cf6ak) or [BaiduDrive](https://bit.ly/3BiFG4c)(key: vsic) | 3040 |
</details>
<details open>
<summary>GRID</summary>
<p> </p>
| Components | WER | url | size (MB) |
|:----------------------|:----:|:---------------------------------------------------------------------------------------:|:-----------:|
| **Visual-only** |
| Overlapped | 1.2 |[GoogleDrive](https://bit.ly/3Aa6PWn) or [BaiduDrive](https://bit.ly/3IdamGh)(key: d8d2) | 186 |
| Unseen | 4.8 |[GoogleDrive](https://bit.ly/3patMVh) or [BaiduDrive](https://bit.ly/3t6459A)(key: ttsh) | 186 |
| **Landmarks** |
| - | - |[GoogleDrive](https://bit.ly/2Yzu1PF) or [BaiduDrive](https://bit.ly/30fucjG)(key: 16l9) | 1141 |
You can include `data_ext=.mpg` in your command line to match the video file extension in the GRID dataset.
</details>
<details open>
<summary>Lombard GRID</summary>
<p> </p>
| Components | WER | url | size (MB) |
|:----------------------|:----:|:---------------------------------------------------------------------------------------:|:-----------:|
| **Visual-only** |
| Unseen (Front Plain) | 4.9 |[GoogleDrive](https://bit.ly/3H5zkGQ) or [BaiduDrive](https://bit.ly/3LE1xI6)(key: 38ds) | 186 |
| Unseen (Side Plain) | 8.0 |[GoogleDrive](https://bit.ly/3BsGOSO) or [BaiduDrive](https://bit.ly/3sRZYNY)(key: k6m0) | 186 |
| **Landmarks** |
| - | - |[GoogleDrive](https://bit.ly/354YOH0) or [BaiduDrive](https://bit.ly/3oWUCA4)(key: cusv) | 309 |
You can include `data_ext=.mov` in your command line to match the video file extension in the Lombard GRID dataset.
</details>
<details open>
<summary>TCD-TIMIT</summary>
<p> </p>
| Components | WER | url | size (MB) |
|:----------------------|:----:|:---------------------------------------------------------------------------------------:|:-----------:|
| **Visual-only** |
| Overlapped | 16.9 |[GoogleDrive](https://bit.ly/3Fv7u61) or [BaiduDrive](https://bit.ly/33rPlZN)(key: jh65) | 186 |
| Unseen | 21.8 |[GoogleDrive](https://bit.ly/3530d0N) or [BaiduDrive](https://bit.ly/3nxZjzC)(key: n2gr) | 186 |
| **Language models** |
| - | - |[GoogleDrive](https://bit.ly/3qzWKit) or [BaiduDrive](https://bit.ly/3KgAL7T)(key: 59u2) | 180 |
| **Landmarks** |
| - | - |[GoogleDrive](https://bit.ly/3HYmifr) or [BaiduDrive](https://bit.ly/3JFJ6RH)(key: bnm8) | 930 |
</details>
## Citation
If you use the AutoAVSR models, please consider citing the following paper:
```bibtex
@inproceedings{ma2023auto,
author={Ma, Pingchuan and Haliassos, Alexandros and Fernandez-Lopez, Adriana and Chen, Honglie and Petridis, Stavros and Pantic, Maja},
booktitle={IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
title={Auto-AVSR: Audio-Visual Speech Recognition with Automatic Labels},
year={2023},
}
```
If you use the VSR models for multiple languages please consider citing the following paper:
```bibtex
@article{ma2022visual,
title={{Visual Speech Recognition for Multiple Languages in the Wild}},
author={Ma, Pingchuan and Petridis, Stavros and Pantic, Maja},
journal={{Nature Machine Intelligence}},
volume={4},
pages={930--939},
year={2022}
url={https://doi.org/10.1038/s42256-022-00550-z},
doi={10.1038/s42256-022-00550-z}
}
```
## License
It is noted that the code can only be used for comparative or benchmarking purposes. Users can only use code supplied under a [License](./LICENSE) for non-commercial purposes.
## Contact
```
[Pingchuan Ma](pingchuan.ma16[at]imperial.ac.uk)
```
|