Spaces:
Runtime error
Runtime error
File size: 33,540 Bytes
09481f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 |
# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
import argparse
import copy
import json
import logging
import os
import shutil
import tempfile
import numpy as np
import torch
# * -------------------- training iterator related -------------------- *
class CompareValueTrigger(object):
"""Trigger invoked when key value getting bigger or lower than before.
Args:
key (str) : Key of value.
compare_fn ((float, float) -> bool) : Function to compare the values.
trigger (tuple(int, str)) : Trigger that decide the comparison interval.
"""
def __init__(self, key, compare_fn, trigger=(1, "epoch")):
from chainer import training
self._key = key
self._best_value = None
self._interval_trigger = training.util.get_trigger(trigger)
self._init_summary()
self._compare_fn = compare_fn
def __call__(self, trainer):
"""Get value related to the key and compare with current value."""
observation = trainer.observation
summary = self._summary
key = self._key
if key in observation:
summary.add({key: observation[key]})
if not self._interval_trigger(trainer):
return False
stats = summary.compute_mean()
value = float(stats[key]) # copy to CPU
self._init_summary()
if self._best_value is None:
# initialize best value
self._best_value = value
return False
elif self._compare_fn(self._best_value, value):
return True
else:
self._best_value = value
return False
def _init_summary(self):
import chainer
self._summary = chainer.reporter.DictSummary()
try:
from chainer.training import extension
except ImportError:
PlotAttentionReport = None
else:
class PlotAttentionReport(extension.Extension):
"""Plot attention reporter.
Args:
att_vis_fn (espnet.nets.*_backend.e2e_asr.E2E.calculate_all_attentions):
Function of attention visualization.
data (list[tuple(str, dict[str, list[Any]])]): List json utt key items.
outdir (str): Directory to save figures.
converter (espnet.asr.*_backend.asr.CustomConverter):
Function to convert data.
device (int | torch.device): Device.
reverse (bool): If True, input and output length are reversed.
ikey (str): Key to access input
(for ASR/ST ikey="input", for MT ikey="output".)
iaxis (int): Dimension to access input
(for ASR/ST iaxis=0, for MT iaxis=1.)
okey (str): Key to access output
(for ASR/ST okey="input", MT okay="output".)
oaxis (int): Dimension to access output
(for ASR/ST oaxis=0, for MT oaxis=0.)
subsampling_factor (int): subsampling factor in encoder
"""
def __init__(
self,
att_vis_fn,
data,
outdir,
converter,
transform,
device,
reverse=False,
ikey="input",
iaxis=0,
okey="output",
oaxis=0,
subsampling_factor=1,
):
self.att_vis_fn = att_vis_fn
self.data = copy.deepcopy(data)
self.data_dict = {k: v for k, v in copy.deepcopy(data)}
# key is utterance ID
self.outdir = outdir
self.converter = converter
self.transform = transform
self.device = device
self.reverse = reverse
self.ikey = ikey
self.iaxis = iaxis
self.okey = okey
self.oaxis = oaxis
self.factor = subsampling_factor
if not os.path.exists(self.outdir):
os.makedirs(self.outdir)
def __call__(self, trainer):
"""Plot and save image file of att_ws matrix."""
att_ws, uttid_list = self.get_attention_weights()
if isinstance(att_ws, list): # multi-encoder case
num_encs = len(att_ws) - 1
# atts
for i in range(num_encs):
for idx, att_w in enumerate(att_ws[i]):
filename = "%s/%s.ep.{.updater.epoch}.att%d.png" % (
self.outdir,
uttid_list[idx],
i + 1,
)
att_w = self.trim_attention_weight(uttid_list[idx], att_w)
np_filename = "%s/%s.ep.{.updater.epoch}.att%d.npy" % (
self.outdir,
uttid_list[idx],
i + 1,
)
np.save(np_filename.format(trainer), att_w)
self._plot_and_save_attention(att_w, filename.format(trainer))
# han
for idx, att_w in enumerate(att_ws[num_encs]):
filename = "%s/%s.ep.{.updater.epoch}.han.png" % (
self.outdir,
uttid_list[idx],
)
att_w = self.trim_attention_weight(uttid_list[idx], att_w)
np_filename = "%s/%s.ep.{.updater.epoch}.han.npy" % (
self.outdir,
uttid_list[idx],
)
np.save(np_filename.format(trainer), att_w)
self._plot_and_save_attention(
att_w, filename.format(trainer), han_mode=True
)
else:
for idx, att_w in enumerate(att_ws):
filename = "%s/%s.ep.{.updater.epoch}.png" % (
self.outdir,
uttid_list[idx],
)
att_w = self.trim_attention_weight(uttid_list[idx], att_w)
np_filename = "%s/%s.ep.{.updater.epoch}.npy" % (
self.outdir,
uttid_list[idx],
)
np.save(np_filename.format(trainer), att_w)
self._plot_and_save_attention(att_w, filename.format(trainer))
def log_attentions(self, logger, step):
"""Add image files of att_ws matrix to the tensorboard."""
att_ws, uttid_list = self.get_attention_weights()
if isinstance(att_ws, list): # multi-encoder case
num_encs = len(att_ws) - 1
# atts
for i in range(num_encs):
for idx, att_w in enumerate(att_ws[i]):
att_w = self.trim_attention_weight(uttid_list[idx], att_w)
plot = self.draw_attention_plot(att_w)
logger.add_figure(
"%s_att%d" % (uttid_list[idx], i + 1),
plot.gcf(),
step,
)
# han
for idx, att_w in enumerate(att_ws[num_encs]):
att_w = self.trim_attention_weight(uttid_list[idx], att_w)
plot = self.draw_han_plot(att_w)
logger.add_figure(
"%s_han" % (uttid_list[idx]),
plot.gcf(),
step,
)
else:
for idx, att_w in enumerate(att_ws):
att_w = self.trim_attention_weight(uttid_list[idx], att_w)
plot = self.draw_attention_plot(att_w)
logger.add_figure("%s" % (uttid_list[idx]), plot.gcf(), step)
def get_attention_weights(self):
"""Return attention weights.
Returns:
numpy.ndarray: attention weights. float. Its shape would be
differ from backend.
* pytorch-> 1) multi-head case => (B, H, Lmax, Tmax), 2)
other case => (B, Lmax, Tmax).
* chainer-> (B, Lmax, Tmax)
"""
return_batch, uttid_list = self.transform(self.data, return_uttid=True)
batch = self.converter([return_batch], self.device)
if isinstance(batch, tuple):
att_ws = self.att_vis_fn(*batch)
else:
att_ws = self.att_vis_fn(**batch)
return att_ws, uttid_list
def trim_attention_weight(self, uttid, att_w):
"""Transform attention matrix with regard to self.reverse."""
if self.reverse:
enc_key, enc_axis = self.okey, self.oaxis
dec_key, dec_axis = self.ikey, self.iaxis
else:
enc_key, enc_axis = self.ikey, self.iaxis
dec_key, dec_axis = self.okey, self.oaxis
dec_len = int(self.data_dict[uttid][dec_key][dec_axis]["shape"][0])
enc_len = int(self.data_dict[uttid][enc_key][enc_axis]["shape"][0])
if self.factor > 1:
enc_len //= self.factor
if len(att_w.shape) == 3:
att_w = att_w[:, :dec_len, :enc_len]
else:
att_w = att_w[:dec_len, :enc_len]
return att_w
def draw_attention_plot(self, att_w):
"""Plot the att_w matrix.
Returns:
matplotlib.pyplot: pyplot object with attention matrix image.
"""
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
plt.clf()
att_w = att_w.astype(np.float32)
if len(att_w.shape) == 3:
for h, aw in enumerate(att_w, 1):
plt.subplot(1, len(att_w), h)
plt.imshow(aw, aspect="auto")
plt.xlabel("Encoder Index")
plt.ylabel("Decoder Index")
else:
plt.imshow(att_w, aspect="auto")
plt.xlabel("Encoder Index")
plt.ylabel("Decoder Index")
plt.tight_layout()
return plt
def draw_han_plot(self, att_w):
"""Plot the att_w matrix for hierarchical attention.
Returns:
matplotlib.pyplot: pyplot object with attention matrix image.
"""
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
plt.clf()
if len(att_w.shape) == 3:
for h, aw in enumerate(att_w, 1):
legends = []
plt.subplot(1, len(att_w), h)
for i in range(aw.shape[1]):
plt.plot(aw[:, i])
legends.append("Att{}".format(i))
plt.ylim([0, 1.0])
plt.xlim([0, aw.shape[0]])
plt.grid(True)
plt.ylabel("Attention Weight")
plt.xlabel("Decoder Index")
plt.legend(legends)
else:
legends = []
for i in range(att_w.shape[1]):
plt.plot(att_w[:, i])
legends.append("Att{}".format(i))
plt.ylim([0, 1.0])
plt.xlim([0, att_w.shape[0]])
plt.grid(True)
plt.ylabel("Attention Weight")
plt.xlabel("Decoder Index")
plt.legend(legends)
plt.tight_layout()
return plt
def _plot_and_save_attention(self, att_w, filename, han_mode=False):
if han_mode:
plt = self.draw_han_plot(att_w)
else:
plt = self.draw_attention_plot(att_w)
plt.savefig(filename)
plt.close()
try:
from chainer.training import extension
except ImportError:
PlotCTCReport = None
else:
class PlotCTCReport(extension.Extension):
"""Plot CTC reporter.
Args:
ctc_vis_fn (espnet.nets.*_backend.e2e_asr.E2E.calculate_all_ctc_probs):
Function of CTC visualization.
data (list[tuple(str, dict[str, list[Any]])]): List json utt key items.
outdir (str): Directory to save figures.
converter (espnet.asr.*_backend.asr.CustomConverter):
Function to convert data.
device (int | torch.device): Device.
reverse (bool): If True, input and output length are reversed.
ikey (str): Key to access input
(for ASR/ST ikey="input", for MT ikey="output".)
iaxis (int): Dimension to access input
(for ASR/ST iaxis=0, for MT iaxis=1.)
okey (str): Key to access output
(for ASR/ST okey="input", MT okay="output".)
oaxis (int): Dimension to access output
(for ASR/ST oaxis=0, for MT oaxis=0.)
subsampling_factor (int): subsampling factor in encoder
"""
def __init__(
self,
ctc_vis_fn,
data,
outdir,
converter,
transform,
device,
reverse=False,
ikey="input",
iaxis=0,
okey="output",
oaxis=0,
subsampling_factor=1,
):
self.ctc_vis_fn = ctc_vis_fn
self.data = copy.deepcopy(data)
self.data_dict = {k: v for k, v in copy.deepcopy(data)}
# key is utterance ID
self.outdir = outdir
self.converter = converter
self.transform = transform
self.device = device
self.reverse = reverse
self.ikey = ikey
self.iaxis = iaxis
self.okey = okey
self.oaxis = oaxis
self.factor = subsampling_factor
if not os.path.exists(self.outdir):
os.makedirs(self.outdir)
def __call__(self, trainer):
"""Plot and save image file of ctc prob."""
ctc_probs, uttid_list = self.get_ctc_probs()
if isinstance(ctc_probs, list): # multi-encoder case
num_encs = len(ctc_probs) - 1
for i in range(num_encs):
for idx, ctc_prob in enumerate(ctc_probs[i]):
filename = "%s/%s.ep.{.updater.epoch}.ctc%d.png" % (
self.outdir,
uttid_list[idx],
i + 1,
)
ctc_prob = self.trim_ctc_prob(uttid_list[idx], ctc_prob)
np_filename = "%s/%s.ep.{.updater.epoch}.ctc%d.npy" % (
self.outdir,
uttid_list[idx],
i + 1,
)
np.save(np_filename.format(trainer), ctc_prob)
self._plot_and_save_ctc(ctc_prob, filename.format(trainer))
else:
for idx, ctc_prob in enumerate(ctc_probs):
filename = "%s/%s.ep.{.updater.epoch}.png" % (
self.outdir,
uttid_list[idx],
)
ctc_prob = self.trim_ctc_prob(uttid_list[idx], ctc_prob)
np_filename = "%s/%s.ep.{.updater.epoch}.npy" % (
self.outdir,
uttid_list[idx],
)
np.save(np_filename.format(trainer), ctc_prob)
self._plot_and_save_ctc(ctc_prob, filename.format(trainer))
def log_ctc_probs(self, logger, step):
"""Add image files of ctc probs to the tensorboard."""
ctc_probs, uttid_list = self.get_ctc_probs()
if isinstance(ctc_probs, list): # multi-encoder case
num_encs = len(ctc_probs) - 1
for i in range(num_encs):
for idx, ctc_prob in enumerate(ctc_probs[i]):
ctc_prob = self.trim_ctc_prob(uttid_list[idx], ctc_prob)
plot = self.draw_ctc_plot(ctc_prob)
logger.add_figure(
"%s_ctc%d" % (uttid_list[idx], i + 1),
plot.gcf(),
step,
)
else:
for idx, ctc_prob in enumerate(ctc_probs):
ctc_prob = self.trim_ctc_prob(uttid_list[idx], ctc_prob)
plot = self.draw_ctc_plot(ctc_prob)
logger.add_figure("%s" % (uttid_list[idx]), plot.gcf(), step)
def get_ctc_probs(self):
"""Return CTC probs.
Returns:
numpy.ndarray: CTC probs. float. Its shape would be
differ from backend. (B, Tmax, vocab).
"""
return_batch, uttid_list = self.transform(self.data, return_uttid=True)
batch = self.converter([return_batch], self.device)
if isinstance(batch, tuple):
probs = self.ctc_vis_fn(*batch)
else:
probs = self.ctc_vis_fn(**batch)
return probs, uttid_list
def trim_ctc_prob(self, uttid, prob):
"""Trim CTC posteriors accoding to input lengths."""
enc_len = int(self.data_dict[uttid][self.ikey][self.iaxis]["shape"][0])
if self.factor > 1:
enc_len //= self.factor
prob = prob[:enc_len]
return prob
def draw_ctc_plot(self, ctc_prob):
"""Plot the ctc_prob matrix.
Returns:
matplotlib.pyplot: pyplot object with CTC prob matrix image.
"""
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
ctc_prob = ctc_prob.astype(np.float32)
plt.clf()
topk_ids = np.argsort(ctc_prob, axis=1)
n_frames, vocab = ctc_prob.shape
times_probs = np.arange(n_frames)
plt.figure(figsize=(20, 8))
# NOTE: index 0 is reserved for blank
for idx in set(topk_ids.reshape(-1).tolist()):
if idx == 0:
plt.plot(
times_probs, ctc_prob[:, 0], ":", label="<blank>", color="grey"
)
else:
plt.plot(times_probs, ctc_prob[:, idx])
plt.xlabel("Input [frame]", fontsize=12)
plt.ylabel("Posteriors", fontsize=12)
plt.xticks(list(range(0, int(n_frames) + 1, 10)))
plt.yticks(list(range(0, 2, 1)))
plt.tight_layout()
return plt
def _plot_and_save_ctc(self, ctc_prob, filename):
plt = self.draw_ctc_plot(ctc_prob)
plt.savefig(filename)
plt.close()
def restore_snapshot(model, snapshot, load_fn=None):
"""Extension to restore snapshot.
Returns:
An extension function.
"""
import chainer
from chainer import training
if load_fn is None:
load_fn = chainer.serializers.load_npz
@training.make_extension(trigger=(1, "epoch"))
def restore_snapshot(trainer):
_restore_snapshot(model, snapshot, load_fn)
return restore_snapshot
def _restore_snapshot(model, snapshot, load_fn=None):
if load_fn is None:
import chainer
load_fn = chainer.serializers.load_npz
load_fn(snapshot, model)
logging.info("restored from " + str(snapshot))
def adadelta_eps_decay(eps_decay):
"""Extension to perform adadelta eps decay.
Args:
eps_decay (float): Decay rate of eps.
Returns:
An extension function.
"""
from chainer import training
@training.make_extension(trigger=(1, "epoch"))
def adadelta_eps_decay(trainer):
_adadelta_eps_decay(trainer, eps_decay)
return adadelta_eps_decay
def _adadelta_eps_decay(trainer, eps_decay):
optimizer = trainer.updater.get_optimizer("main")
# for chainer
if hasattr(optimizer, "eps"):
current_eps = optimizer.eps
setattr(optimizer, "eps", current_eps * eps_decay)
logging.info("adadelta eps decayed to " + str(optimizer.eps))
# pytorch
else:
for p in optimizer.param_groups:
p["eps"] *= eps_decay
logging.info("adadelta eps decayed to " + str(p["eps"]))
def adam_lr_decay(eps_decay):
"""Extension to perform adam lr decay.
Args:
eps_decay (float): Decay rate of lr.
Returns:
An extension function.
"""
from chainer import training
@training.make_extension(trigger=(1, "epoch"))
def adam_lr_decay(trainer):
_adam_lr_decay(trainer, eps_decay)
return adam_lr_decay
def _adam_lr_decay(trainer, eps_decay):
optimizer = trainer.updater.get_optimizer("main")
# for chainer
if hasattr(optimizer, "lr"):
current_lr = optimizer.lr
setattr(optimizer, "lr", current_lr * eps_decay)
logging.info("adam lr decayed to " + str(optimizer.lr))
# pytorch
else:
for p in optimizer.param_groups:
p["lr"] *= eps_decay
logging.info("adam lr decayed to " + str(p["lr"]))
def torch_snapshot(savefun=torch.save, filename="snapshot.ep.{.updater.epoch}"):
"""Extension to take snapshot of the trainer for pytorch.
Returns:
An extension function.
"""
from chainer.training import extension
@extension.make_extension(trigger=(1, "epoch"), priority=-100)
def torch_snapshot(trainer):
_torch_snapshot_object(trainer, trainer, filename.format(trainer), savefun)
return torch_snapshot
def _torch_snapshot_object(trainer, target, filename, savefun):
from chainer.serializers import DictionarySerializer
# make snapshot_dict dictionary
s = DictionarySerializer()
s.save(trainer)
if hasattr(trainer.updater.model, "model"):
# (for TTS)
if hasattr(trainer.updater.model.model, "module"):
model_state_dict = trainer.updater.model.model.module.state_dict()
else:
model_state_dict = trainer.updater.model.model.state_dict()
else:
# (for ASR)
if hasattr(trainer.updater.model, "module"):
model_state_dict = trainer.updater.model.module.state_dict()
else:
model_state_dict = trainer.updater.model.state_dict()
snapshot_dict = {
"trainer": s.target,
"model": model_state_dict,
"optimizer": trainer.updater.get_optimizer("main").state_dict(),
}
# save snapshot dictionary
fn = filename.format(trainer)
prefix = "tmp" + fn
tmpdir = tempfile.mkdtemp(prefix=prefix, dir=trainer.out)
tmppath = os.path.join(tmpdir, fn)
try:
savefun(snapshot_dict, tmppath)
shutil.move(tmppath, os.path.join(trainer.out, fn))
finally:
shutil.rmtree(tmpdir)
def add_gradient_noise(model, iteration, duration=100, eta=1.0, scale_factor=0.55):
"""Adds noise from a standard normal distribution to the gradients.
The standard deviation (`sigma`) is controlled by the three hyper-parameters below.
`sigma` goes to zero (no noise) with more iterations.
Args:
model (torch.nn.model): Model.
iteration (int): Number of iterations.
duration (int) {100, 1000}:
Number of durations to control the interval of the `sigma` change.
eta (float) {0.01, 0.3, 1.0}: The magnitude of `sigma`.
scale_factor (float) {0.55}: The scale of `sigma`.
"""
interval = (iteration // duration) + 1
sigma = eta / interval**scale_factor
for param in model.parameters():
if param.grad is not None:
_shape = param.grad.size()
noise = sigma * torch.randn(_shape).to(param.device)
param.grad += noise
# * -------------------- general -------------------- *
def get_model_conf(model_path, conf_path=None):
"""Get model config information by reading a model config file (model.json).
Args:
model_path (str): Model path.
conf_path (str): Optional model config path.
Returns:
list[int, int, dict[str, Any]]: Config information loaded from json file.
"""
if conf_path is None:
model_conf = os.path.dirname(model_path) + "/model.json"
else:
model_conf = conf_path
with open(model_conf, "rb") as f:
logging.info("reading a config file from " + model_conf)
confs = json.load(f)
if isinstance(confs, dict):
# for lm
args = confs
return argparse.Namespace(**args)
else:
# for asr, tts, mt
idim, odim, args = confs
return idim, odim, argparse.Namespace(**args)
def chainer_load(path, model):
"""Load chainer model parameters.
Args:
path (str): Model path or snapshot file path to be loaded.
model (chainer.Chain): Chainer model.
"""
import chainer
if "snapshot" in os.path.basename(path):
chainer.serializers.load_npz(path, model, path="updater/model:main/")
else:
chainer.serializers.load_npz(path, model)
def torch_save(path, model):
"""Save torch model states.
Args:
path (str): Model path to be saved.
model (torch.nn.Module): Torch model.
"""
if hasattr(model, "module"):
torch.save(model.module.state_dict(), path)
else:
torch.save(model.state_dict(), path)
def snapshot_object(target, filename):
"""Returns a trainer extension to take snapshots of a given object.
Args:
target (model): Object to serialize.
filename (str): Name of the file into which the object is serialized.It can
be a format string, where the trainer object is passed to
the :meth: `str.format` method. For example,
``'snapshot_{.updater.iteration}'`` is converted to
``'snapshot_10000'`` at the 10,000th iteration.
Returns:
An extension function.
"""
from chainer.training import extension
@extension.make_extension(trigger=(1, "epoch"), priority=-100)
def snapshot_object(trainer):
torch_save(os.path.join(trainer.out, filename.format(trainer)), target)
return snapshot_object
def torch_load(path, model):
"""Load torch model states.
Args:
path (str): Model path or snapshot file path to be loaded.
model (torch.nn.Module): Torch model.
"""
if "snapshot" in os.path.basename(path):
model_state_dict = torch.load(path, map_location=lambda storage, loc: storage)[
"model"
]
else:
model_state_dict = torch.load(path, map_location=lambda storage, loc: storage)
if hasattr(model, "module"):
model.module.load_state_dict(model_state_dict)
else:
model.load_state_dict(model_state_dict)
del model_state_dict
def torch_resume(snapshot_path, trainer):
"""Resume from snapshot for pytorch.
Args:
snapshot_path (str): Snapshot file path.
trainer (chainer.training.Trainer): Chainer's trainer instance.
"""
from chainer.serializers import NpzDeserializer
# load snapshot
snapshot_dict = torch.load(snapshot_path, map_location=lambda storage, loc: storage)
# restore trainer states
d = NpzDeserializer(snapshot_dict["trainer"])
d.load(trainer)
# restore model states
if hasattr(trainer.updater.model, "model"):
# (for TTS model)
if hasattr(trainer.updater.model.model, "module"):
trainer.updater.model.model.module.load_state_dict(snapshot_dict["model"])
else:
trainer.updater.model.model.load_state_dict(snapshot_dict["model"])
else:
# (for ASR model)
if hasattr(trainer.updater.model, "module"):
trainer.updater.model.module.load_state_dict(snapshot_dict["model"])
else:
trainer.updater.model.load_state_dict(snapshot_dict["model"])
# retore optimizer states
trainer.updater.get_optimizer("main").load_state_dict(snapshot_dict["optimizer"])
# delete opened snapshot
del snapshot_dict
# * ------------------ recognition related ------------------ *
def parse_hypothesis(hyp, char_list):
"""Parse hypothesis.
Args:
hyp (list[dict[str, Any]]): Recognition hypothesis.
char_list (list[str]): List of characters.
Returns:
tuple(str, str, str, float)
"""
# remove sos and get results
tokenid_as_list = list(map(int, hyp["yseq"][1:]))
token_as_list = [char_list[idx] for idx in tokenid_as_list]
score = float(hyp["score"])
# convert to string
tokenid = " ".join([str(idx) for idx in tokenid_as_list])
token = " ".join(token_as_list)
text = "".join(token_as_list).replace("<space>", " ")
return text, token, tokenid, score
def add_results_to_json(nbest_hyps, char_list):
"""Add N-best results to json.
Args:
js (dict[str, Any]): Groundtruth utterance dict.
nbest_hyps_sd (list[dict[str, Any]]):
List of hypothesis for multi_speakers: nutts x nspkrs.
char_list (list[str]): List of characters.
Returns:
str: 1-best result
"""
assert len(nbest_hyps) == 1, "only 1-best result is supported."
# parse hypothesis
rec_text, rec_token, rec_tokenid, score = parse_hypothesis(nbest_hyps[0], char_list)
return rec_text
def plot_spectrogram(
plt,
spec,
mode="db",
fs=None,
frame_shift=None,
bottom=True,
left=True,
right=True,
top=False,
labelbottom=True,
labelleft=True,
labelright=True,
labeltop=False,
cmap="inferno",
):
"""Plot spectrogram using matplotlib.
Args:
plt (matplotlib.pyplot): pyplot object.
spec (numpy.ndarray): Input stft (Freq, Time)
mode (str): db or linear.
fs (int): Sample frequency. To convert y-axis to kHz unit.
frame_shift (int): The frame shift of stft. To convert x-axis to second unit.
bottom (bool):Whether to draw the respective ticks.
left (bool):
right (bool):
top (bool):
labelbottom (bool):Whether to draw the respective tick labels.
labelleft (bool):
labelright (bool):
labeltop (bool):
cmap (str): Colormap defined in matplotlib.
"""
spec = np.abs(spec)
if mode == "db":
x = 20 * np.log10(spec + np.finfo(spec.dtype).eps)
elif mode == "linear":
x = spec
else:
raise ValueError(mode)
if fs is not None:
ytop = fs / 2000
ylabel = "kHz"
else:
ytop = x.shape[0]
ylabel = "bin"
if frame_shift is not None and fs is not None:
xtop = x.shape[1] * frame_shift / fs
xlabel = "s"
else:
xtop = x.shape[1]
xlabel = "frame"
extent = (0, xtop, 0, ytop)
plt.imshow(x[::-1], cmap=cmap, extent=extent)
if labelbottom:
plt.xlabel("time [{}]".format(xlabel))
if labelleft:
plt.ylabel("freq [{}]".format(ylabel))
plt.colorbar().set_label("{}".format(mode))
plt.tick_params(
bottom=bottom,
left=left,
right=right,
top=top,
labelbottom=labelbottom,
labelleft=labelleft,
labelright=labelright,
labeltop=labeltop,
)
plt.axis("auto")
# * ------------------ recognition related ------------------ *
def format_mulenc_args(args):
"""Format args for multi-encoder setup.
It deals with following situations: (when args.num_encs=2):
1. args.elayers = None -> args.elayers = [4, 4];
2. args.elayers = 4 -> args.elayers = [4, 4];
3. args.elayers = [4, 4, 4] -> args.elayers = [4, 4].
"""
# default values when None is assigned.
default_dict = {
"etype": "blstmp",
"elayers": 4,
"eunits": 300,
"subsample": "1",
"dropout_rate": 0.0,
"atype": "dot",
"adim": 320,
"awin": 5,
"aheads": 4,
"aconv_chans": -1,
"aconv_filts": 100,
}
for k in default_dict.keys():
if isinstance(vars(args)[k], list):
if len(vars(args)[k]) != args.num_encs:
logging.warning(
"Length mismatch {}: Convert {} to {}.".format(
k, vars(args)[k], vars(args)[k][: args.num_encs]
)
)
vars(args)[k] = vars(args)[k][: args.num_encs]
else:
if not vars(args)[k]:
# assign default value if it is None
vars(args)[k] = default_dict[k]
logging.warning(
"{} is not specified, use default value {}.".format(
k, default_dict[k]
)
)
# duplicate
logging.warning(
"Type mismatch {}: Convert {} to {}.".format(
k, vars(args)[k], [vars(args)[k] for _ in range(args.num_encs)]
)
)
vars(args)[k] = [vars(args)[k] for _ in range(args.num_encs)]
return args
|