File size: 3,812 Bytes
a35325d
 
 
 
63e2ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a35325d
d577e1e
 
 
a35325d
 
 
 
 
 
 
f1fc904
a35325d
f1fc904
a35325d
 
 
 
 
 
63e2ee7
a35325d
 
8fa7a2d
63e2ee7
8fa7a2d
 
4c034e2
a35325d
 
 
 
 
 
63e2ee7
 
557008d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
import gradio as gr
from pipelines.pipeline import InferencePipeline

TITLE = """
    <div style="text-align: center; max-width: 650px; margin: 0 auto;">
        <div
        style="
            display: inline-flex;
            align-items: center;
            gap: 0.8rem;
            font-size: 1.75rem;
        "
        >
        <h1 style="font-weight: 900; margin-bottom: 7px;">
            Auto-AVSR: Audio-Visual Speech Recognition with Automatic Labels
        </h1>
        <h3 style="font-weight: 450; font-size: 1rem; margin: 0rem"> 
        [<a href="https://arxiv.org/abs/2303.14307" style="color:blue;">arXiv</a>] 
        [<a href="https://github.com/mpc001/auto_avsr" style="color:blue;">Code</a>]
        </h3> 
        </div>
        <p style="margin-bottom: 10px; font-size: 94%">
        Want to recognise the content from audio or visual information?<br>The Auto-AVSR is here to get you answers!
        </p>
    </div>
"""

ARTICLE = """
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
    <p>
    Server busy? You can also run on <a href="https://colab.research.google.com/drive/1jfb6e4xxhXHbmQf-nncdLno1u0b4j614?usp=sharing">Google Colab</a>
    </p>
    <p>
    We share this demo only for non-commercial purposes.
    </p>
</div>
"""

CSS = """
    #col-container {margin-left: auto; margin-right: auto;}
    a {text-decoration-line: underline; font-weight: 600;}
    .animate-spin {
        animation: spin 1s linear infinite;
    }
    @keyframes spin {
        from { transform: rotate(0deg); }
        to { transform: rotate(360deg); }
    }
    #share-btn-container {
        display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
    }
    #share-btn {
        all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
    }
    #share-btn * {
        all: unset;
    }
    #share-btn-container div:nth-child(-n+2){
        width: auto !important;
        min-height: 0px !important;
    }
    #share-btn-container .wrap {
        display: none !important;
    }
"""

pipelines = {
    "VSR(mediapipe)": InferencePipeline("./configs/LRS3_V_WER19.1.ini", device="cpu", face_track=True, detector="mediapipe"),
    "ASR": InferencePipeline("./configs/LRS3_A_WER1.0.ini", device="cpu", face_track=True, detector="mediapipe"),
    "AVSR(mediapipe)": InferencePipeline("./configs/LRS3_AV_WER0.9.ini", device="cpu", face_track=True, detector="mediapipe")
}
print("Step 0. Model has been loaded.")

def fn(pipeline_type, filename):
    print("Step 0. Video has been uploaded.")
    selected_pipeline_instance = pipelines[pipeline_type]
    print("Step 1. Video has been converted.")
    landmarks = selected_pipeline_instance.process_landmarks(filename, landmarks_filename=None)
    print("Step 2. Landmarks have been detected.")
    data = selected_pipeline_instance.dataloader.load_data(filename, landmarks)
    print("Step 3. Data has been preprocessed.")
    transcript = selected_pipeline_instance.model.infer(data)
    print("Step 4. Inference has been done.")
    print(f"transcript: {transcript}")
    return transcript

demo = gr.Blocks(css=CSS)

with demo:

    gr.HTML(TITLE)

    
    dropdown_list = gr.inputs.Dropdown(["ASR", "VSR(mediapipe)", "AVSR(mediapipe)"], label="model")
    video_file = gr.Video(label="INPUT VIDEO", include_audio=True)
    text = gr.Textbox(label="PREDICTION")
    btn = gr.Button("Submit").style(full_width=True)

    btn.click(fn, inputs=[dropdown_list, video_file], outputs=text)

    gr.HTML(ARTICLE)

demo.launch()