File size: 13,951 Bytes
09481f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
#!/usr/bin/env python3

# Copyright 2018 Mitsubishi Electric Research Labs (Takaaki Hori)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

import torch

import numpy as np
import six


class CTCPrefixScoreTH(object):
    """Batch processing of CTCPrefixScore

    which is based on Algorithm 2 in WATANABE et al.
    "HYBRID CTC/ATTENTION ARCHITECTURE FOR END-TO-END SPEECH RECOGNITION,"
    but extended to efficiently compute the label probablities for multiple
    hypotheses simultaneously
    See also Seki et al. "Vectorized Beam Search for CTC-Attention-Based
    Speech Recognition," In INTERSPEECH (pp. 3825-3829), 2019.
    """

    def __init__(self, x, xlens, blank, eos, margin=0):
        """Construct CTC prefix scorer

        :param torch.Tensor x: input label posterior sequences (B, T, O)
        :param torch.Tensor xlens: input lengths (B,)
        :param int blank: blank label id
        :param int eos: end-of-sequence id
        :param int margin: margin parameter for windowing (0 means no windowing)
        """
        # In the comment lines,
        # we assume T: input_length, B: batch size, W: beam width, O: output dim.
        self.logzero = -10000000000.0
        self.blank = blank
        self.eos = eos
        self.batch = x.size(0)
        self.input_length = x.size(1)
        self.odim = x.size(2)
        self.dtype = x.dtype
        self.device = (
            torch.device("cuda:%d" % x.get_device())
            if x.is_cuda
            else torch.device("cpu")
        )
        # Pad the rest of posteriors in the batch
        # TODO(takaaki-hori): need a better way without for-loops
        for i, l in enumerate(xlens):
            if l < self.input_length:
                x[i, l:, :] = self.logzero
                x[i, l:, blank] = 0
        # Reshape input x
        xn = x.transpose(0, 1)  # (B, T, O) -> (T, B, O)
        xb = xn[:, :, self.blank].unsqueeze(2).expand(-1, -1, self.odim)
        self.x = torch.stack([xn, xb])  # (2, T, B, O)
        self.end_frames = torch.as_tensor(xlens) - 1

        # Setup CTC windowing
        self.margin = margin
        if margin > 0:
            self.frame_ids = torch.arange(
                self.input_length, dtype=self.dtype, device=self.device
            )
        # Base indices for index conversion
        self.idx_bh = None
        self.idx_b = torch.arange(self.batch, device=self.device)
        self.idx_bo = (self.idx_b * self.odim).unsqueeze(1)

    def __call__(self, y, state, scoring_ids=None, att_w=None):
        """Compute CTC prefix scores for next labels

        :param list y: prefix label sequences
        :param tuple state: previous CTC state
        :param torch.Tensor pre_scores: scores for pre-selection of hypotheses (BW, O)
        :param torch.Tensor att_w: attention weights to decide CTC window
        :return new_state, ctc_local_scores (BW, O)
        """
        output_length = len(y[0]) - 1  # ignore sos
        last_ids = [yi[-1] for yi in y]  # last output label ids
        n_bh = len(last_ids)  # batch * hyps
        n_hyps = n_bh // self.batch  # assuming each utterance has the same # of hyps
        self.scoring_num = scoring_ids.size(-1) if scoring_ids is not None else 0
        # prepare state info
        if state is None:
            r_prev = torch.full(
                (self.input_length, 2, self.batch, n_hyps),
                self.logzero,
                dtype=self.dtype,
                device=self.device,
            )
            r_prev[:, 1] = torch.cumsum(self.x[0, :, :, self.blank], 0).unsqueeze(2)
            r_prev = r_prev.view(-1, 2, n_bh)
            s_prev = 0.0
            f_min_prev = 0
            f_max_prev = 1
        else:
            r_prev, s_prev, f_min_prev, f_max_prev = state

        # select input dimensions for scoring
        if self.scoring_num > 0:
            scoring_idmap = torch.full(
                (n_bh, self.odim), -1, dtype=torch.long, device=self.device
            )
            snum = self.scoring_num
            if self.idx_bh is None or n_bh > len(self.idx_bh):
                self.idx_bh = torch.arange(n_bh, device=self.device).view(-1, 1)
            scoring_idmap[self.idx_bh[:n_bh], scoring_ids] = torch.arange(
                snum, device=self.device
            )
            scoring_idx = (
                scoring_ids + self.idx_bo.repeat(1, n_hyps).view(-1, 1)
            ).view(-1)
            x_ = torch.index_select(
                self.x.view(2, -1, self.batch * self.odim), 2, scoring_idx
            ).view(2, -1, n_bh, snum)
        else:
            scoring_ids = None
            scoring_idmap = None
            snum = self.odim
            x_ = self.x.unsqueeze(3).repeat(1, 1, 1, n_hyps, 1).view(2, -1, n_bh, snum)

        # new CTC forward probs are prepared as a (T x 2 x BW x S) tensor
        # that corresponds to r_t^n(h) and r_t^b(h) in a batch.
        r = torch.full(
            (self.input_length, 2, n_bh, snum),
            self.logzero,
            dtype=self.dtype,
            device=self.device,
        )
        if output_length == 0:
            r[0, 0] = x_[0, 0]

        r_sum = torch.logsumexp(r_prev, 1)
        log_phi = r_sum.unsqueeze(2).repeat(1, 1, snum)
        if scoring_ids is not None:
            for idx in range(n_bh):
                pos = scoring_idmap[idx, last_ids[idx]]
                if pos >= 0:
                    log_phi[:, idx, pos] = r_prev[:, 1, idx]
        else:
            for idx in range(n_bh):
                log_phi[:, idx, last_ids[idx]] = r_prev[:, 1, idx]

        # decide start and end frames based on attention weights
        if att_w is not None and self.margin > 0:
            f_arg = torch.matmul(att_w, self.frame_ids)
            f_min = max(int(f_arg.min().cpu()), f_min_prev)
            f_max = max(int(f_arg.max().cpu()), f_max_prev)
            start = min(f_max_prev, max(f_min - self.margin, output_length, 1))
            end = min(f_max + self.margin, self.input_length)
        else:
            f_min = f_max = 0
            start = max(output_length, 1)
            end = self.input_length

        # compute forward probabilities log(r_t^n(h)) and log(r_t^b(h))
        for t in range(start, end):
            rp = r[t - 1]
            rr = torch.stack([rp[0], log_phi[t - 1], rp[0], rp[1]]).view(
                2, 2, n_bh, snum
            )
            r[t] = torch.logsumexp(rr, 1) + x_[:, t]

        # compute log prefix probabilities log(psi)
        log_phi_x = torch.cat((log_phi[0].unsqueeze(0), log_phi[:-1]), dim=0) + x_[0]
        if scoring_ids is not None:
            log_psi = torch.full(
                (n_bh, self.odim), self.logzero, dtype=self.dtype, device=self.device
            )
            log_psi_ = torch.logsumexp(
                torch.cat((log_phi_x[start:end], r[start - 1, 0].unsqueeze(0)), dim=0),
                dim=0,
            )
            for si in range(n_bh):
                log_psi[si, scoring_ids[si]] = log_psi_[si]
        else:
            log_psi = torch.logsumexp(
                torch.cat((log_phi_x[start:end], r[start - 1, 0].unsqueeze(0)), dim=0),
                dim=0,
            )

        for si in range(n_bh):
            log_psi[si, self.eos] = r_sum[self.end_frames[si // n_hyps], si]

        # exclude blank probs
        log_psi[:, self.blank] = self.logzero

        return (log_psi - s_prev), (r, log_psi, f_min, f_max, scoring_idmap)

    def index_select_state(self, state, best_ids):
        """Select CTC states according to best ids

        :param state    : CTC state
        :param best_ids : index numbers selected by beam pruning (B, W)
        :return selected_state
        """
        r, s, f_min, f_max, scoring_idmap = state
        # convert ids to BHO space
        n_bh = len(s)
        n_hyps = n_bh // self.batch
        vidx = (best_ids + (self.idx_b * (n_hyps * self.odim)).view(-1, 1)).view(-1)
        # select hypothesis scores
        s_new = torch.index_select(s.view(-1), 0, vidx)
        s_new = s_new.view(-1, 1).repeat(1, self.odim).view(n_bh, self.odim)
        # convert ids to BHS space (S: scoring_num)
        if scoring_idmap is not None:
            snum = self.scoring_num
            hyp_idx = (best_ids // self.odim + (self.idx_b * n_hyps).view(-1, 1)).view(
                -1
            )
            label_ids = torch.fmod(best_ids, self.odim).view(-1)
            score_idx = scoring_idmap[hyp_idx, label_ids]
            score_idx[score_idx == -1] = 0
            vidx = score_idx + hyp_idx * snum
        else:
            snum = self.odim
        # select forward probabilities
        r_new = torch.index_select(r.view(-1, 2, n_bh * snum), 2, vidx).view(
            -1, 2, n_bh
        )
        return r_new, s_new, f_min, f_max

    def extend_prob(self, x):
        """Extend CTC prob.

        :param torch.Tensor x: input label posterior sequences (B, T, O)
        """

        if self.x.shape[1] < x.shape[1]:  # self.x (2,T,B,O); x (B,T,O)
            # Pad the rest of posteriors in the batch
            # TODO(takaaki-hori): need a better way without for-loops
            xlens = [x.size(1)]
            for i, l in enumerate(xlens):
                if l < self.input_length:
                    x[i, l:, :] = self.logzero
                    x[i, l:, self.blank] = 0
            tmp_x = self.x
            xn = x.transpose(0, 1)  # (B, T, O) -> (T, B, O)
            xb = xn[:, :, self.blank].unsqueeze(2).expand(-1, -1, self.odim)
            self.x = torch.stack([xn, xb])  # (2, T, B, O)
            self.x[:, : tmp_x.shape[1], :, :] = tmp_x
            self.input_length = x.size(1)
            self.end_frames = torch.as_tensor(xlens) - 1

    def extend_state(self, state):
        """Compute CTC prefix state.


        :param state    : CTC state
        :return ctc_state
        """

        if state is None:
            # nothing to do
            return state
        else:
            r_prev, s_prev, f_min_prev, f_max_prev = state

            r_prev_new = torch.full(
                (self.input_length, 2),
                self.logzero,
                dtype=self.dtype,
                device=self.device,
            )
            start = max(r_prev.shape[0], 1)
            r_prev_new[0:start] = r_prev
            for t in six.moves.range(start, self.input_length):
                r_prev_new[t, 1] = r_prev_new[t - 1, 1] + self.x[0, t, :, self.blank]

            return (r_prev_new, s_prev, f_min_prev, f_max_prev)


class CTCPrefixScore(object):
    """Compute CTC label sequence scores

    which is based on Algorithm 2 in WATANABE et al.
    "HYBRID CTC/ATTENTION ARCHITECTURE FOR END-TO-END SPEECH RECOGNITION,"
    but extended to efficiently compute the probablities of multiple labels
    simultaneously
    """

    def __init__(self, x, blank, eos, xp):
        self.xp = xp
        self.logzero = -10000000000.0
        self.blank = blank
        self.eos = eos
        self.input_length = len(x)
        self.x = x

    def initial_state(self):
        """Obtain an initial CTC state

        :return: CTC state
        """
        # initial CTC state is made of a frame x 2 tensor that corresponds to
        # r_t^n(<sos>) and r_t^b(<sos>), where 0 and 1 of axis=1 represent
        # superscripts n and b (non-blank and blank), respectively.
        r = self.xp.full((self.input_length, 2), self.logzero, dtype=np.float32)
        r[0, 1] = self.x[0, self.blank]
        for i in six.moves.range(1, self.input_length):
            r[i, 1] = r[i - 1, 1] + self.x[i, self.blank]
        return r

    def __call__(self, y, cs, r_prev):
        """Compute CTC prefix scores for next labels

        :param y     : prefix label sequence
        :param cs    : array of next labels
        :param r_prev: previous CTC state
        :return ctc_scores, ctc_states
        """
        # initialize CTC states
        output_length = len(y) - 1  # ignore sos
        # new CTC states are prepared as a frame x (n or b) x n_labels tensor
        # that corresponds to r_t^n(h) and r_t^b(h).
        r = self.xp.ndarray((self.input_length, 2, len(cs)), dtype=np.float32)
        xs = self.x[:, cs]
        if output_length == 0:
            r[0, 0] = xs[0]
            r[0, 1] = self.logzero
        else:
            r[output_length - 1] = self.logzero

        # prepare forward probabilities for the last label
        r_sum = self.xp.logaddexp(
            r_prev[:, 0], r_prev[:, 1]
        )  # log(r_t^n(g) + r_t^b(g))
        last = y[-1]
        if output_length > 0 and last in cs:
            log_phi = self.xp.ndarray((self.input_length, len(cs)), dtype=np.float32)
            for i in six.moves.range(len(cs)):
                log_phi[:, i] = r_sum if cs[i] != last else r_prev[:, 1]
        else:
            log_phi = r_sum

        # compute forward probabilities log(r_t^n(h)), log(r_t^b(h)),
        # and log prefix probabilities log(psi)
        start = max(output_length, 1)
        log_psi = r[start - 1, 0]
        for t in six.moves.range(start, self.input_length):
            r[t, 0] = self.xp.logaddexp(r[t - 1, 0], log_phi[t - 1]) + xs[t]
            r[t, 1] = (
                self.xp.logaddexp(r[t - 1, 0], r[t - 1, 1]) + self.x[t, self.blank]
            )
            log_psi = self.xp.logaddexp(log_psi, log_phi[t - 1] + xs[t])

        # get P(...eos|X) that ends with the prefix itself
        eos_pos = self.xp.where(cs == self.eos)[0]
        if len(eos_pos) > 0:
            log_psi[eos_pos] = r_sum[-1]  # log(r_T^n(g) + r_T^b(g))

        # exclude blank probs
        blank_pos = self.xp.where(cs == self.blank)[0]
        if len(blank_pos) > 0:
            log_psi[blank_pos] = self.logzero

        # return the log prefix probability and CTC states, where the label axis
        # of the CTC states is moved to the first axis to slice it easily
        return log_psi, self.xp.rollaxis(r, 2)