File size: 13,463 Bytes
9f95946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import torch
import torch.nn.functional as F
from dataclasses import dataclass
from diffusers.utils import BaseOutput
from typing import Any, Dict, List, Optional, Tuple, Union
from diffusers.models.unet_2d_blocks import UNetMidBlock2D, UpDecoderBlock2D, CrossAttnDownBlock2D, DownBlock2D, UNetMidBlock2DCrossAttn, UpBlock2D, CrossAttnUpBlock2D
from diffusers.models.resnet import ResnetBlock2D
from diffusers.models.attention import AttentionBlock
from diffusers.models.cross_attention import CrossAttention
from attribution import FullyConnectedLayer
import math


def customize_vae_decoder(vae, phi_dimension, modulation, finetune, weight_offset, lr_multiplier):
    d = 'd' in modulation
    e = 'e' in modulation
    q = 'q' in modulation
    k = 'k' in modulation
    v = 'v' in modulation

    def add_affine_conv(vaed):
        if not (d or e):
            return

        for layer in vaed.children():
            if type(layer) == ResnetBlock2D:
                if d:
                    layer.affine_d = FullyConnectedLayer(phi_dimension, layer.conv1.weight.shape[1], lr_multiplier=lr_multiplier, bias_init=1)
                if e:
                    layer.affine_e = FullyConnectedLayer(phi_dimension, layer.conv2.weight.shape[1], lr_multiplier=lr_multiplier, bias_init=1)
            else:
                add_affine_conv(layer)

    def add_affine_attn(vaed):
        if not (q or k or v):
            return

        for layer in vaed.children():
            if type(layer) == AttentionBlock:
                if q:
                    layer.affine_q = FullyConnectedLayer(phi_dimension, layer.query.weight.shape[1], lr_multiplier=lr_multiplier, bias_init=1)
                if k:
                    layer.affine_k = FullyConnectedLayer(phi_dimension, layer.key.weight.shape[1], lr_multiplier=lr_multiplier, bias_init=1)
                if v:
                    layer.affine_v = FullyConnectedLayer(phi_dimension, layer.value.weight.shape[1], lr_multiplier=lr_multiplier, bias_init=1)
            else:
                add_affine_attn(layer)

    def impose_grad_condition(vaed, finetune):
        if finetune == 'all':
            return

        for name, params in vaed.named_parameters():
            requires_grad = False
            if finetune == 'match':
                d_cond = d and (('resnets' in name and 'conv1' in name) or 'affine_d' in name)
                e_cond = e and (('resnets' in name and 'conv2' in name) or 'affine_e' in name)
                q_cond = q and (('attentions' in name and 'query' in name) or 'affine_q' in name)
                k_cond = k and (('attentions' in name and 'key' in name) or 'affine_k' in name)
                v_cond = v and (('attentions' in name and 'value' in name) or 'affine_v' in name)
                if q_cond or k_cond or v_cond or d_cond or e_cond:
                    requires_grad = True
                params.requires_grad = requires_grad

    def change_forward(vaed, layer_type, new_forward):
        for layer in vaed.children():
            if type(layer) == layer_type:
                bound_method = new_forward.__get__(layer, layer.__class__)
                setattr(layer, 'forward', bound_method)
            else:
                change_forward(layer, layer_type, new_forward)

    def new_forward_MB(self, hidden_states, encoded_fingerprint, temb=None):
        hidden_states = self.resnets[0]((hidden_states, encoded_fingerprint), temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            if attn is not None:
                hidden_states = attn((hidden_states, encoded_fingerprint))
            hidden_states = resnet((hidden_states, encoded_fingerprint), temb)

        return hidden_states

    def new_forward_UDB(self, hidden_states, encoded_fingerprint):
        for resnet in self.resnets:
            hidden_states = resnet((hidden_states, encoded_fingerprint), temb=None)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states

    def new_forward_RB(self, input_tensor, temb):
        input_tensor, encoded_fingerprint = input_tensor
        hidden_states = input_tensor

        hidden_states = self.norm1(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)

        if self.upsample is not None:
            # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
            if hidden_states.shape[0] >= 64:
                input_tensor = input_tensor.contiguous()
                hidden_states = hidden_states.contiguous()
            input_tensor = self.upsample(input_tensor)
            hidden_states = self.upsample(hidden_states)
        elif self.downsample is not None:
            input_tensor = self.downsample(input_tensor)
            hidden_states = self.downsample(hidden_states)

        if d:
            phis = self.affine_d(encoded_fingerprint)
            batch_size = phis.shape[0]
            if not weight_offset:
                weight = phis.view(batch_size, 1, -1, 1, 1) * self.conv1.weight.unsqueeze(0)
            else:
                weight = self.conv1.weight
                weight_mod = phis.view(batch_size, 1, -1, 1, 1) * self.conv1.weight.unsqueeze(0)
                weight = weight.unsqueeze(0) + weight_mod
            hidden_states = F.conv2d(hidden_states.contiguous().view(1, -1, hidden_states.shape[-2], hidden_states.shape[-1]), weight.view(-1, weight.shape[-3], weight.shape[-2], weight.shape[-1]), padding=1, groups=batch_size).view(batch_size, weight.shape[1], hidden_states.shape[-2], hidden_states.shape[-1]) + self.conv1.bias.view(1, -1, 1, 1)
        else:
            hidden_states = self.conv1(hidden_states)

        if temb is not None:
            temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]

        if temb is not None and self.time_embedding_norm == "default":
            hidden_states = hidden_states + temb

        hidden_states = self.norm2(hidden_states)

        if temb is not None and self.time_embedding_norm == "scale_shift":
            scale, shift = torch.chunk(temb, 2, dim=1)
            hidden_states = hidden_states * (1 + scale) + shift

        hidden_states = self.nonlinearity(hidden_states)

        hidden_states = self.dropout(hidden_states)

        if e:
            phis = self.affine_e(encoded_fingerprint)
            batch_size = phis.shape[0]
            if not weight_offset:
                weight = phis.view(batch_size, 1, -1, 1, 1) * self.conv2.weight.unsqueeze(0)
            else:
                weight = self.conv2.weight
                weight_mod = phis.view(batch_size, 1, -1, 1, 1) * self.conv2.weight.unsqueeze(0)
                weight = weight.unsqueeze(0) + weight_mod
            hidden_states = F.conv2d(hidden_states.contiguous().view(1, -1, hidden_states.shape[-2], hidden_states.shape[-1]), weight.view(-1, weight.shape[-3], weight.shape[-2], weight.shape[-1]), padding=1, groups=batch_size).view(batch_size, weight.shape[1], hidden_states.shape[-2], hidden_states.shape[-1]) + self.conv2.bias.view(1, -1, 1, 1)
        else:
            hidden_states = self.conv2(hidden_states)

        if self.conv_shortcut is not None:
            input_tensor = self.conv_shortcut(input_tensor)

        output_tensor = (input_tensor + hidden_states) / self.output_scale_factor

        return output_tensor

    def new_forward_AB(self, hidden_states):
        hidden_states, encoded_fingerprint = hidden_states
        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)

        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        if q:
            phis_q = self.affine_q(encoded_fingerprint)
            if not weight_offset:
                query_proj = torch.bmm(hidden_states, phis_q.unsqueeze(-1) * self.query.weight.t().unsqueeze(0)) + self.query.bias
            else:
                qw = self.query.weight
                qw_mod = phis_q.unsqueeze(-1) * qw.t().unsqueeze(0)
                query_proj = torch.bmm(hidden_states, qw.t().unsqueeze(0) + qw_mod) + self.query.bias
        else:
            query_proj = self.query(hidden_states)

        if k:
            phis_k = self.affine_k(encoded_fingerprint)
            if not weight_offset:
                key_proj = torch.bmm(hidden_states, phis_k.unsqueeze(-1) * self.key.weight.t().unsqueeze(0)) + self.key.bias
            else:
                kw = self.key.weight
                kw_mod = phis_k.unsqueeze(-1) * kw.t().unsqueeze(0)
                key_proj = torch.bmm(hidden_states, kw.t().unsqueeze(0) + kw_mod) + self.key.bias
        else:
            key_proj = self.key(hidden_states)

        if v:
            phis_v = self.affine_v(encoded_fingerprint)
            if not weight_offset:
                value_proj = torch.bmm(hidden_states, phis_v.unsqueeze(-1) * self.value.weight.t().unsqueeze(0)) + self.value.bias
            else:
                vw = self.value.weight
                vw_mod = phis_v.unsqueeze(-1) * vw.t().unsqueeze(0)
                value_proj = torch.bmm(hidden_states, vw.t().unsqueeze(0) + vw_mod) + self.value.bias
        else:
            value_proj = self.value(hidden_states)

        scale = 1 / math.sqrt(self.channels / self.num_heads)

        query_proj = self.reshape_heads_to_batch_dim(query_proj)
        key_proj = self.reshape_heads_to_batch_dim(key_proj)
        value_proj = self.reshape_heads_to_batch_dim(value_proj)

        if self._use_memory_efficient_attention_xformers:
            # Memory efficient attention
            hidden_states = xformers.ops.memory_efficient_attention(
                query_proj, key_proj, value_proj, attn_bias=None, op=self._attention_op
            )
            hidden_states = hidden_states.to(query_proj.dtype)
        else:
            attention_scores = torch.baddbmm(
                torch.empty(
                    query_proj.shape[0],
                    query_proj.shape[1],
                    key_proj.shape[1],
                    dtype=query_proj.dtype,
                    device=query_proj.device,
                ),
                query_proj,
                key_proj.transpose(-1, -2),
                beta=0,
                alpha=scale,
            )
            attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
            hidden_states = torch.bmm(attention_probs, value_proj)

        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)

        # compute next hidden_states
        hidden_states = self.proj_attn(hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states

    # Reference: https://github.com/huggingface/diffusers
    def new_forward_vaed(self, z, enconded_fingerprint):
        sample = z
        sample = self.conv_in(sample)

        # middle
        sample = self.mid_block(sample, enconded_fingerprint)

        # up
        for up_block in self.up_blocks:
            sample = up_block(sample, enconded_fingerprint)

        # post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample

    @dataclass
    class DecoderOutput(BaseOutput):
        """
        Output of decoding method.
        Args:
            sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
                Decoded output sample of the model. Output of the last layer of the model.
        """

        sample: torch.FloatTensor

    def new__decode(self, z: torch.FloatTensor, encoded_fingerprint: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
        z = self.post_quant_conv(z)
        dec = self.decoder(z, encoded_fingerprint)

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

    def new_decode(self, z: torch.FloatTensor, encoded_fingerprint: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
        if self.use_slicing and z.shape[0] > 1:
            decoded_slices = [self._decode(z_slice, encoded_fingerprint).sample for z_slice in z.split(1)]
            decoded = torch.cat(decoded_slices)
        else:
            decoded = self._decode(z, encoded_fingerprint).sample

        if not return_dict:
            return (decoded,)

        return DecoderOutput(sample=decoded)

    add_affine_conv(vae.decoder)
    add_affine_attn(vae.decoder)
    impose_grad_condition(vae.decoder, finetune)
    change_forward(vae.decoder, UNetMidBlock2D, new_forward_MB)
    change_forward(vae.decoder, UpDecoderBlock2D, new_forward_UDB)
    change_forward(vae.decoder, ResnetBlock2D, new_forward_RB)
    change_forward(vae.decoder, AttentionBlock, new_forward_AB)
    setattr(vae.decoder, 'forward', new_forward_vaed.__get__(vae.decoder, vae.decoder.__class__))
    setattr(vae, '_decode', new__decode.__get__(vae, vae.__class__))
    setattr(vae, 'decode', new_decode.__get__(vae, vae.__class__))

    return vae