Spaces:
Running
on
T4
Running
on
T4
File size: 13,463 Bytes
9f95946 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import torch
import torch.nn.functional as F
from dataclasses import dataclass
from diffusers.utils import BaseOutput
from typing import Any, Dict, List, Optional, Tuple, Union
from diffusers.models.unet_2d_blocks import UNetMidBlock2D, UpDecoderBlock2D, CrossAttnDownBlock2D, DownBlock2D, UNetMidBlock2DCrossAttn, UpBlock2D, CrossAttnUpBlock2D
from diffusers.models.resnet import ResnetBlock2D
from diffusers.models.attention import AttentionBlock
from diffusers.models.cross_attention import CrossAttention
from attribution import FullyConnectedLayer
import math
def customize_vae_decoder(vae, phi_dimension, modulation, finetune, weight_offset, lr_multiplier):
d = 'd' in modulation
e = 'e' in modulation
q = 'q' in modulation
k = 'k' in modulation
v = 'v' in modulation
def add_affine_conv(vaed):
if not (d or e):
return
for layer in vaed.children():
if type(layer) == ResnetBlock2D:
if d:
layer.affine_d = FullyConnectedLayer(phi_dimension, layer.conv1.weight.shape[1], lr_multiplier=lr_multiplier, bias_init=1)
if e:
layer.affine_e = FullyConnectedLayer(phi_dimension, layer.conv2.weight.shape[1], lr_multiplier=lr_multiplier, bias_init=1)
else:
add_affine_conv(layer)
def add_affine_attn(vaed):
if not (q or k or v):
return
for layer in vaed.children():
if type(layer) == AttentionBlock:
if q:
layer.affine_q = FullyConnectedLayer(phi_dimension, layer.query.weight.shape[1], lr_multiplier=lr_multiplier, bias_init=1)
if k:
layer.affine_k = FullyConnectedLayer(phi_dimension, layer.key.weight.shape[1], lr_multiplier=lr_multiplier, bias_init=1)
if v:
layer.affine_v = FullyConnectedLayer(phi_dimension, layer.value.weight.shape[1], lr_multiplier=lr_multiplier, bias_init=1)
else:
add_affine_attn(layer)
def impose_grad_condition(vaed, finetune):
if finetune == 'all':
return
for name, params in vaed.named_parameters():
requires_grad = False
if finetune == 'match':
d_cond = d and (('resnets' in name and 'conv1' in name) or 'affine_d' in name)
e_cond = e and (('resnets' in name and 'conv2' in name) or 'affine_e' in name)
q_cond = q and (('attentions' in name and 'query' in name) or 'affine_q' in name)
k_cond = k and (('attentions' in name and 'key' in name) or 'affine_k' in name)
v_cond = v and (('attentions' in name and 'value' in name) or 'affine_v' in name)
if q_cond or k_cond or v_cond or d_cond or e_cond:
requires_grad = True
params.requires_grad = requires_grad
def change_forward(vaed, layer_type, new_forward):
for layer in vaed.children():
if type(layer) == layer_type:
bound_method = new_forward.__get__(layer, layer.__class__)
setattr(layer, 'forward', bound_method)
else:
change_forward(layer, layer_type, new_forward)
def new_forward_MB(self, hidden_states, encoded_fingerprint, temb=None):
hidden_states = self.resnets[0]((hidden_states, encoded_fingerprint), temb)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
if attn is not None:
hidden_states = attn((hidden_states, encoded_fingerprint))
hidden_states = resnet((hidden_states, encoded_fingerprint), temb)
return hidden_states
def new_forward_UDB(self, hidden_states, encoded_fingerprint):
for resnet in self.resnets:
hidden_states = resnet((hidden_states, encoded_fingerprint), temb=None)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
return hidden_states
def new_forward_RB(self, input_tensor, temb):
input_tensor, encoded_fingerprint = input_tensor
hidden_states = input_tensor
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
if self.upsample is not None:
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
if hidden_states.shape[0] >= 64:
input_tensor = input_tensor.contiguous()
hidden_states = hidden_states.contiguous()
input_tensor = self.upsample(input_tensor)
hidden_states = self.upsample(hidden_states)
elif self.downsample is not None:
input_tensor = self.downsample(input_tensor)
hidden_states = self.downsample(hidden_states)
if d:
phis = self.affine_d(encoded_fingerprint)
batch_size = phis.shape[0]
if not weight_offset:
weight = phis.view(batch_size, 1, -1, 1, 1) * self.conv1.weight.unsqueeze(0)
else:
weight = self.conv1.weight
weight_mod = phis.view(batch_size, 1, -1, 1, 1) * self.conv1.weight.unsqueeze(0)
weight = weight.unsqueeze(0) + weight_mod
hidden_states = F.conv2d(hidden_states.contiguous().view(1, -1, hidden_states.shape[-2], hidden_states.shape[-1]), weight.view(-1, weight.shape[-3], weight.shape[-2], weight.shape[-1]), padding=1, groups=batch_size).view(batch_size, weight.shape[1], hidden_states.shape[-2], hidden_states.shape[-1]) + self.conv1.bias.view(1, -1, 1, 1)
else:
hidden_states = self.conv1(hidden_states)
if temb is not None:
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
if temb is not None and self.time_embedding_norm == "default":
hidden_states = hidden_states + temb
hidden_states = self.norm2(hidden_states)
if temb is not None and self.time_embedding_norm == "scale_shift":
scale, shift = torch.chunk(temb, 2, dim=1)
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
if e:
phis = self.affine_e(encoded_fingerprint)
batch_size = phis.shape[0]
if not weight_offset:
weight = phis.view(batch_size, 1, -1, 1, 1) * self.conv2.weight.unsqueeze(0)
else:
weight = self.conv2.weight
weight_mod = phis.view(batch_size, 1, -1, 1, 1) * self.conv2.weight.unsqueeze(0)
weight = weight.unsqueeze(0) + weight_mod
hidden_states = F.conv2d(hidden_states.contiguous().view(1, -1, hidden_states.shape[-2], hidden_states.shape[-1]), weight.view(-1, weight.shape[-3], weight.shape[-2], weight.shape[-1]), padding=1, groups=batch_size).view(batch_size, weight.shape[1], hidden_states.shape[-2], hidden_states.shape[-1]) + self.conv2.bias.view(1, -1, 1, 1)
else:
hidden_states = self.conv2(hidden_states)
if self.conv_shortcut is not None:
input_tensor = self.conv_shortcut(input_tensor)
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
return output_tensor
def new_forward_AB(self, hidden_states):
hidden_states, encoded_fingerprint = hidden_states
residual = hidden_states
batch, channel, height, width = hidden_states.shape
# norm
hidden_states = self.group_norm(hidden_states)
hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)
# proj to q, k, v
if q:
phis_q = self.affine_q(encoded_fingerprint)
if not weight_offset:
query_proj = torch.bmm(hidden_states, phis_q.unsqueeze(-1) * self.query.weight.t().unsqueeze(0)) + self.query.bias
else:
qw = self.query.weight
qw_mod = phis_q.unsqueeze(-1) * qw.t().unsqueeze(0)
query_proj = torch.bmm(hidden_states, qw.t().unsqueeze(0) + qw_mod) + self.query.bias
else:
query_proj = self.query(hidden_states)
if k:
phis_k = self.affine_k(encoded_fingerprint)
if not weight_offset:
key_proj = torch.bmm(hidden_states, phis_k.unsqueeze(-1) * self.key.weight.t().unsqueeze(0)) + self.key.bias
else:
kw = self.key.weight
kw_mod = phis_k.unsqueeze(-1) * kw.t().unsqueeze(0)
key_proj = torch.bmm(hidden_states, kw.t().unsqueeze(0) + kw_mod) + self.key.bias
else:
key_proj = self.key(hidden_states)
if v:
phis_v = self.affine_v(encoded_fingerprint)
if not weight_offset:
value_proj = torch.bmm(hidden_states, phis_v.unsqueeze(-1) * self.value.weight.t().unsqueeze(0)) + self.value.bias
else:
vw = self.value.weight
vw_mod = phis_v.unsqueeze(-1) * vw.t().unsqueeze(0)
value_proj = torch.bmm(hidden_states, vw.t().unsqueeze(0) + vw_mod) + self.value.bias
else:
value_proj = self.value(hidden_states)
scale = 1 / math.sqrt(self.channels / self.num_heads)
query_proj = self.reshape_heads_to_batch_dim(query_proj)
key_proj = self.reshape_heads_to_batch_dim(key_proj)
value_proj = self.reshape_heads_to_batch_dim(value_proj)
if self._use_memory_efficient_attention_xformers:
# Memory efficient attention
hidden_states = xformers.ops.memory_efficient_attention(
query_proj, key_proj, value_proj, attn_bias=None, op=self._attention_op
)
hidden_states = hidden_states.to(query_proj.dtype)
else:
attention_scores = torch.baddbmm(
torch.empty(
query_proj.shape[0],
query_proj.shape[1],
key_proj.shape[1],
dtype=query_proj.dtype,
device=query_proj.device,
),
query_proj,
key_proj.transpose(-1, -2),
beta=0,
alpha=scale,
)
attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
hidden_states = torch.bmm(attention_probs, value_proj)
# reshape hidden_states
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
# compute next hidden_states
hidden_states = self.proj_attn(hidden_states)
hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)
# res connect and rescale
hidden_states = (hidden_states + residual) / self.rescale_output_factor
return hidden_states
# Reference: https://github.com/huggingface/diffusers
def new_forward_vaed(self, z, enconded_fingerprint):
sample = z
sample = self.conv_in(sample)
# middle
sample = self.mid_block(sample, enconded_fingerprint)
# up
for up_block in self.up_blocks:
sample = up_block(sample, enconded_fingerprint)
# post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample
@dataclass
class DecoderOutput(BaseOutput):
"""
Output of decoding method.
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Decoded output sample of the model. Output of the last layer of the model.
"""
sample: torch.FloatTensor
def new__decode(self, z: torch.FloatTensor, encoded_fingerprint: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
z = self.post_quant_conv(z)
dec = self.decoder(z, encoded_fingerprint)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def new_decode(self, z: torch.FloatTensor, encoded_fingerprint: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
if self.use_slicing and z.shape[0] > 1:
decoded_slices = [self._decode(z_slice, encoded_fingerprint).sample for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z, encoded_fingerprint).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
add_affine_conv(vae.decoder)
add_affine_attn(vae.decoder)
impose_grad_condition(vae.decoder, finetune)
change_forward(vae.decoder, UNetMidBlock2D, new_forward_MB)
change_forward(vae.decoder, UpDecoderBlock2D, new_forward_UDB)
change_forward(vae.decoder, ResnetBlock2D, new_forward_RB)
change_forward(vae.decoder, AttentionBlock, new_forward_AB)
setattr(vae.decoder, 'forward', new_forward_vaed.__get__(vae.decoder, vae.decoder.__class__))
setattr(vae, '_decode', new__decode.__get__(vae, vae.__class__))
setattr(vae, 'decode', new_decode.__get__(vae, vae.__class__))
return vae
|