File size: 2,696 Bytes
52c57e0
 
 
 
 
 
f1eda89
 
 
52c57e0
f1eda89
 
52c57e0
 
 
 
4093517
 
0f12594
 
4093517
0f12594
 
 
0581571
0f12594
 
 
 
 
 
 
 
4093517
0f12594
 
 
52c57e0
d6f6a75
52c57e0
a3a5528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f88cfb3
 
 
a3a5528
 
 
 
 
 
0f12594
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import torch
import numpy as np
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Processor, LayoutLMv3ForTokenClassification
from PIL import Image, ImageDraw, ImageFont
from utils import OCR, unnormalize_box

tokenizer = LayoutLMv3TokenizerFast.from_pretrained("mp-02/layoutlmv3-finetuned-cord-sroie", apply_ocr=False)
processor = LayoutLMv3Processor.from_pretrained("mp-02/layoutlmv3-finetuned-cord-sroie", apply_ocr=False)
model = LayoutLMv3ForTokenClassification.from_pretrained("mp-02/layoutlmv3-finetuned-cord-sroie")

id2label = model.config.id2label
label2id = model.config.label2id

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)

import json

# Mappa gli ID predetti nelle etichette di classificazione
labels = processor.tokenizer.convert_ids_to_tokens(predicted_ids)

# Funzione per creare l'output JSON in formato CORD-like
def create_json_output(words, labels, boxes):
    output = []
    
    for word, label, box in zip(words, labels, boxes):
        # Considera solo le etichette rilevanti (escludendo "O")
        if label != "O":
            output.append({
                "text": word,
                "category": label,  # la categoria predetta dal modello (es. "B-PRODUCT", "B-PRICE", "B-TOTAL")
                "bounding_box": box  # le coordinate di bounding box per la parola
            })
    
    # Converti in JSON
    json_output = json.dumps(output, indent=4)
    return json_output

def prediction(image):

    boxes, words = OCR(image)
    # Preprocessa l'immagine e il testo con il processore di LayoutLMv3
    encoding = processor(image, words=words, boxes=boxes, return_tensors="pt", padding="max_length", truncation=True)
    
    # Esegui l'inferenza con il modello fine-tuned
    with torch.no_grad():
        outputs = model(**encoding)
    
    # Ottieni le etichette previste dal modello
    logits = outputs.logits
    predicted_ids = logits.argmax(-1).squeeze().tolist()
    
    predictions = outputs.logits.argmax(-1).squeeze().tolist()
    token_boxes = encoding.bbox.squeeze().tolist()
    probabilities = torch.softmax(outputs.logits, dim=-1)
    confidence_scores = probabilities.max(-1).values.squeeze().tolist()
    # Crea il JSON usando i risultati ottenuti
    json_result = create_json_output(words, labels, boxes)

    draw = ImageDraw.Draw(image, "RGBA")
    font = ImageFont.load_default()
    
    for prediction, box, confidence in zip(true_predictions, true_boxes, true_confidence_scores):
            draw.rectangle(box)
            draw.text((box[0]+10, box[1]-10), text=prediction+ ", "+ str(confidence), font=font, fill="black", font_size="15")
    
    return image, json_result