File size: 8,767 Bytes
8fed32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import os
import io
import torch
import base64
import zipfile
from flask import Flask, request, jsonify, render_template, send_file
from medgan.dcgan import Generator_DCGAN, generate_examples_DCGAN
from medgan.progan import Generator_ProGAN, generate_examples_ProGAN, seed_everything
from medgan.stylegan import Generator_SG2, MappingNetwork, generate_examples_SG2
from medgan.vit import TumorDetectionApp
from medgan.wgan import Generator_WGAN, generate_examples_WGAN
# Initialize Flask app
app = Flask(__name__)
# Set seeds for reproducibility
seed_everything()
# Constants
Z_DIM = 256
FEATURES_GEN = 64
CHANNELS_IMG = 3
progan_steps = 6 # Number of steps for ProGAN fade-in
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Model paths
model_paths = {
"DCGAN": {
"Glioma": "models/DCGAN-Glioma.pth",
"Pituitary": "models/DCGAN-Meningioma.pth",
"Meningioma": "models/DCGAN-Pituitary.pth",
},
"ProGAN": {
"Glioma": "models/ProGAN-Glioma.pth",
"Meningioma": "models/ProGAN-Meningioma.pth",
"Pituitary": "models/ProGAN-Pituitary.pth",
},
"StyleGAN2": {
"Glioma": {
"generator": "models/StyleGAN2-Glioma.pth",
"mapping": "models/StyleGAN2-Glioma-MappingNet.pth"
},
"Meningioma": {
"generator": "models/StyleGAN2-Meningioma.pth",
"mapping": "models/StyleGAN2-Meningioma-MappingNet.pth"
},
"Pituitary": {
"generator": "models/StyleGAN2-Pituitary.pth",
"mapping": "models/StyleGAN2-Pituitary-MappingNet.pth"
},
},
"WGANs": {
"Glioma": "models/WGAN-Glioma.pth",
"Meningioma": "models/WGAN-Pituitary.pth",
"Pituitary": "models/WGAN-Pituitary.pth",
}
}
# Load DCGAN models
dcgan_generators = {}
for label, path in model_paths["DCGAN"].items():
model = Generator_DCGAN(1, 256, 64, 3).to(torch.device('cpu')) # Corrected Z_DIM to 256
model.load_state_dict(torch.load(path, map_location=torch.device('cpu')))
model.eval()
dcgan_generators[label] = model
# Load ProGAN models
progan_generators = {}
for label, path in model_paths["ProGAN"].items():
model = Generator_ProGAN(256, 256, 3).to(torch.device('cpu'))
model.load_state_dict(torch.load(path, map_location=torch.device('cpu')))
model.eval()
progan_generators[label] = model
# Load StyleGAN2 models
stylegan2_generators = {}
stylegan2_mapping_networks = {}
for label, paths in model_paths["StyleGAN2"].items():
gen_model = Generator_SG2(log_resolution=8, W_DIM=256)
map_net = MappingNetwork(256, 256).to(DEVICE)
gen_model.load_state_dict(torch.load(paths["generator"], map_location=torch.device('cpu')))
map_net.load_state_dict(torch.load(paths["mapping"], map_location=torch.device('cpu')))
gen_model.eval()
map_net.eval()
stylegan2_generators[label] = gen_model
stylegan2_mapping_networks[label] = map_net
# Load WGAN models with weights_only and strict=False
wgan_generators = {}
for label, path in model_paths["WGANs"].items():
model = Generator_WGAN().to(torch.device('cpu'))
try:
# Load the state dict with weights_only=True
state_dict = torch.load(path, map_location=torch.device('cpu'))
model.load_state_dict(state_dict, strict=False) # Allows partial compatibility
model.eval()
wgan_generators[label] = model
except FileNotFoundError:
print(f"Checkpoint file not found for {label}: {path}")
except RuntimeError as e:
print(f"Error loading WGAN model for {label}: {e}")
# Routes
@app.route("/")
def home():
return render_template("index.html")
@app.route("/about_us")
def about_us():
return render_template("About_us.html")
@app.route("/generate_info")
def generate_info():
return render_template("generate.html")
@app.route("/contact")
def contact():
return render_template("contact.html")
@app.route("/detect_info")
def detect_info():
return render_template("detect.html")
@app.route("/generate", methods=["POST"])
def generate():
data = request.form
model_type = data.get("model") # "DCGANs", "Progressive GANs", "StyleGAN2", or "WGAN"
class_name = data.get("class_name")
num_images = int(data.get("num_images", 1))
# Select the appropriate model
if model_type == "DCGANs":
generators = dcgan_generators
generation_function = generate_examples_DCGAN
noise = torch.randn(num_images, Z_DIM, 1, 1).to(torch.device('cpu'))
elif model_type == "Progressive GANs":
generators = progan_generators
generation_function = generate_examples_ProGAN
noise = torch.randn(num_images, Z_DIM, 1, 1).to(torch.device('cpu'))
elif model_type == "StyleGAN2":
generators = stylegan2_generators
mapping_networks = stylegan2_mapping_networks
generation_function = generate_examples_SG2
elif model_type == "WGANs":
generators = wgan_generators
generation_function = generate_examples_WGAN
noise = torch.randn(num_images, 256, 1, 1).to(torch.device('cpu'))
else:
return jsonify({"error": "Invalid model type"}), 400
if class_name not in generators:
return jsonify({"error": f"Invalid class name for {model_type}"}), 400
if model_type == "StyleGAN2":
generator = generators[class_name]
mapping_net = mapping_networks[class_name]
images_base64, image_buffers = generation_function(generator, mapping_net, num_images)
else:
generator = generators[class_name]
images_base64, image_buffers = generation_function(generator, noise, num_images)
# Create ZIP file for download
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, "w", zipfile.ZIP_DEFLATED) as zip_file:
for i, buf in enumerate(image_buffers):
if buf: # Ensure buffer is not empty
zip_file.writestr(f"generated_image_{i + 1}.png", buf.getvalue())
zip_buffer.seek(0)
# Render template with images and ZIP file link
return render_template("results.html", images=images_base64, zip_file=True)
@app.route("/download_zip", methods=["GET"])
def download_zip():
"""Route to download the ZIP file containing all generated images."""
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, "w", zipfile.ZIP_DEFLATED) as zip_file:
for i, image_base64 in enumerate(app.config.get("images_base64", [])):
img_data = base64.b64decode(image_base64)
zip_file.writestr(f"generated_image_{i + 1}.png", img_data)
zip_buffer.seek(0)
return send_file(
zip_buffer,
mimetype="application/zip",
as_attachment=True,
download_name="generated_images.zip"
)
@app.route("/detect", methods=["POST"])
def detect():
try:
# Define paths and device
model_path = "models/vit-35-Epochs-92-NTP-model.pth"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Get the uploaded file
file = request.files.get("file")
if not file:
print("No file uploaded.")
return jsonify({"error": "No file uploaded"}), 400
# Save the uploaded file temporarily in the static folder
file_path = os.path.join("static", "temp_image.jpg")
os.makedirs("static", exist_ok=True) # Ensure the directory exists
file.save(file_path)
print(f"File saved to: {file_path}")
# Initialize the detection app
detection_app = TumorDetectionApp(model_path=model_path, device=DEVICE)
print("Detection app initialized.")
# Predict the class
predicted_class = detection_app.predict_image(file_path)
if predicted_class is None:
print("Prediction failed.")
return jsonify({"error": "Prediction failed"}), 500
# Map the prediction to a class name
class_mapping = {
0: "Glioma",
1: "Meningioma",
2: "No Tumor",
3: "Pituitary"
}
result = class_mapping.get(predicted_class, "Unknown")
print(f"Prediction successful. Result: {result}")
# Serve results with the relative path
return render_template("results-detect.html", images=["temp_image.jpg"], result=result)
except Exception as e:
print(f"Error in /detect route: {e}")
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
app.run(debug=True)
|