File size: 7,650 Bytes
93b9482 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import tempfile
import unittest
from pathlib import Path
from typing import Any, Dict, Sequence
import fairseq.data.indexed_dataset as indexed_dataset
import fairseq.options
import fairseq.tasks.online_backtranslation as obt
import torch
from tests import utils
def mk_sample(tokens: Sequence[int], batch_size: int = 2) -> Dict[str, Any]:
batch = torch.stack([torch.tensor(tokens, dtype=torch.long)] * batch_size)
sample = {
"net_input": {
"src_tokens": batch,
"prev_output_tokens": batch,
"src_lengths": torch.tensor([len(tokens)] * batch_size, dtype=torch.long),
},
"target": batch[:, 1:],
}
return sample
def mk_dataset(num_samples: int, max_len: int, output: Path):
output.parent.mkdir(exist_ok=True)
idx = indexed_dataset.IndexedDatasetBuilder(str(output))
data = torch.randint(5, 100, (num_samples, max_len))
lengths = torch.randint(3, max_len, (num_samples,))
for d, l in zip(data, lengths):
d[0] = 0
idx.add_item(d[:l])
idx.finalize(output.with_suffix(".idx"))
assert output.exists()
assert output.with_suffix(".idx").exists()
class OnlineBacktranslationTest(unittest.TestCase):
tmp_dir = Path(tempfile.mkdtemp(suffix="OnlineBacktranslationTest"))
@classmethod
def obt_task(
cls, languages: Sequence[str], data: Path = None, language_mapping: str = None
):
dict_path = cls.tmp_dir / "dict.txt"
if not dict_path.exists():
dictionary = utils.dummy_dictionary(100)
dictionary.save(str(dict_path))
if data is not None:
(data / "dict.txt").write_text(dict_path.read_text())
else:
data = cls.tmp_dir
assert len(languages) >= 2
kwargs = {
"arch": "transformer",
# --max-sentences=1 for better predictability of batches
"max_sentences": 1,
# Use characteristics dimensions
"encoder_layers": 3,
"encoder_embed_dim": 12,
"encoder_ffn_embed_dim": 14,
"encoder_attention_heads": 4,
"decoder_layers": 3,
"decoder_embed_dim": 12,
"decoder_output_dim": 12,
"decoder_ffn_embed_dim": 14,
"decoder_attention_heads": 4,
# Disable dropout so we have comparable tests.
"dropout": 0,
"attention_dropout": 0,
"activation_dropout": 0,
"encoder_layerdrop": 0,
}
args = fairseq.options.get_args(
data,
task="online_backtranslation",
mono_langs=",".join(languages),
valid_lang_pairs=f"{languages[0]}-{languages[1]}",
tokens_per_sample=256,
language_mapping=language_mapping,
**kwargs,
)
task = obt.OnlineBackTranslationTask.setup_task(args)
# we need to build the model to have the correct dictionary
model = task.build_model(task.args)
return task, model
def tmp_path(self, test_case: str) -> Path:
return Path(tempfile.mkdtemp(test_case, dir=self.tmp_dir))
def test_lang_tokens(self):
task, model = self.obt_task(["en", "ro", "zh"])
assert obt._lang_token("en") in task.dictionary
assert obt._lang_token("ro") in task.dictionary
assert obt._lang_token("zh") in task.dictionary
en_bos = obt._lang_token_index(task.common_dict, "en")
assert "en" == task.common_dict[en_bos].strip("_")
zh_bos = obt._lang_token_index(task.common_dict, "zh")
assert "zh" == task.common_dict[zh_bos].strip("_")
zh_sample = mk_sample([zh_bos, 16, 14, 12, 10])
# we expect to receive the bos token for translation
assert task.get_bos_token_from_sample(zh_sample) == en_bos
def test_backtranslate_sample(self):
task, model = self.obt_task(["en", "ro", "zh"])
en_bos = obt._lang_token_index(task.common_dict, "en")
zh_bos = obt._lang_token_index(task.common_dict, "zh")
sample = mk_sample([zh_bos, 16, 14, 12, 10])
task.backtranslate_sample(sample, "zh", "en")
target_zh = list(sample["target"][0])
assert target_zh == [16, 14, 12, 10] # original zh sentence
generated_en = sample["net_input"]["src_tokens"][0]
assert generated_en[0] == en_bos
def test_train_dataset(self):
data = self.tmp_path("test_train_dataset")
mk_dataset(20, 10, data / "en" / "train.bin")
mk_dataset(10, 10, data / "zh" / "train.bin")
task, model = self.obt_task(["en", "zh"], data)
task.load_dataset("train")
en_bos = obt._lang_token_index(task.common_dict, "en")
zh_bos = obt._lang_token_index(task.common_dict, "zh")
train = task.datasets["train"]
train.ordered_indices()
train.prefetch([0, 19])
sample_0 = train[0]
sample_19 = train[19]
self.assertEqual(
set(sample_0.keys()), {"en-BT", "en-DENOISE", "zh-BT", "zh-DENOISE"}
)
for sample in (sample_0, sample_19):
self.assertEqual(sample["en-BT"]["source"][0], en_bos)
# bt target isn't ready to look at.
self.assertEqual(sample["en-DENOISE"]["source"][0], en_bos)
# TODO What could we check on the target side ?
for i in range(10):
# Zh dataset is shorter, and is wrapped around En dataset.
train.prefetch([i, i + 10])
self.assertEqual(
list(train[i]["zh-DENOISE"]["source"]),
list(train[i + 10]["zh-DENOISE"]["source"]),
)
self.assertEqual(train[i]["zh-DENOISE"]["source"][0].item(), zh_bos)
# Sorted by increasing len
self.assertLess(
len(sample_0["en-BT"]["source"]), len(sample_19["en-BT"]["source"])
)
def test_valid_dataset(self):
data = self.tmp_path("test_valid_dataset")
mk_dataset(10, 21, data / "valid.en-zh.en.bin")
mk_dataset(10, 21, data / "valid.en-zh.zh.bin")
task, model = self.obt_task(["en", "zh"], data)
valid = task.load_dataset("valid")
en_bos = obt._lang_token_index(task.common_dict, "en")
assert valid is not None
valid.prefetch(range(10))
sample_0 = valid[0]
sample_9 = valid[9]
self.assertEqual(sample_0["id"], 0)
self.assertEqual(sample_9["id"], 9)
self.assertEqual(sample_0["source"][0], en_bos)
self.assertEqual(sample_9["source"][0], en_bos)
# TODO: could we test the target side ?
def assertFnMatch(self, fn, values):
for x, y in values.items():
fn_x = fn(x)
self.assertEqual(fn_x, y, f"Fn has wrong value: fn({x}) = {fn_x} != {y}")
def test_piecewise_linear_fn(self):
self.assertFnMatch(
obt.PiecewiseLinearFn.from_string("1.0"), {0: 1, 100: 1, 500: 1, 1000: 1}
)
self.assertFnMatch(
obt.PiecewiseLinearFn.from_string("0:1,1000:0"),
{0: 1, 500: 0.5, 1000: 0, 2000: 0},
)
self.assertFnMatch(
obt.PiecewiseLinearFn.from_string("0:0,1000:1"),
{0: 0, 500: 0.5, 1000: 1, 2000: 1},
)
self.assertFnMatch(
obt.PiecewiseLinearFn.from_string("0:0,1000:1,2000:0"),
{0: 0, 500: 0.5, 1000: 1, 1500: 0.5, 2000: 0, 3000: 0},
)
|