File size: 2,211 Bytes
93b9482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import logging
import re
import torch.utils.data
from fairseq.data import FairseqDataset

logger = logging.getLogger(__name__)


class OFADataset(FairseqDataset):
    def __init__(self, split, dataset, bpe, src_dict, tgt_dict):
        self.split = split
        self.dataset = dataset
        self.bpe = bpe
        self.src_dict = src_dict
        self.tgt_dict = tgt_dict

        self.bos = src_dict.bos()
        self.eos = src_dict.eos()
        self.pad = src_dict.pad()
        self.bos_item = torch.LongTensor([self.bos])
        self.eos_item = torch.LongTensor([self.eos])

    def __len__(self):
        return len(self.dataset)

    def encode_text(self, text, length=None, append_bos=False, append_eos=False, use_bpe=True):
        s = self.tgt_dict.encode_line(
            line=self.bpe.encode(text) if use_bpe else text,
            add_if_not_exist=False,
            append_eos=False
        ).long()
        if length is not None:
            s = s[:length]
        if append_bos:
            s = torch.cat([self.bos_item, s])
        if append_eos:
            s = torch.cat([s, self.eos_item])
        return s

    def pre_question(self, question, max_ques_words):
        question = question.lower().lstrip(",.!?*#:;~").replace('-', ' ').replace('/', ' ')

        question = re.sub(
            r"\s{2,}",
            ' ',
            question,
        )
        question = question.rstrip('\n')
        question = question.strip(' ')

        # truncate question
        question_words = question.split(' ')
        if len(question_words) > max_ques_words:
            question = ' '.join(question_words[:max_ques_words])

        return question

    def pre_caption(self, caption, max_words):
        caption = caption.lower().lstrip(",.!?*#:;~").replace('-', ' ').replace('/', ' ').replace('<person>', 'person')

        caption = re.sub(
            r"\s{2,}",
            ' ',
            caption,
        )
        caption = caption.rstrip('\n')
        caption = caption.strip(' ')

        # truncate caption
        caption_words = caption.split(' ')
        if len(caption_words) > max_words:
            caption = ' '.join(caption_words[:max_words])

        return caption